∫ 5tanx / (tanx-2) dx
Answers
Answered by
4
let u = tanx - 2
du/dx = sec²x
dx = du/sec²x
u+2 = tanx
(u+2)² = tan²x
(u+2)² + 1 = tan²x + 1
(u+2)² + 1 = sec²x
u² + 4u + 5 = sec²x
∫ 5tanx / (tanx-2) dx
= ∫ 5(u+2)/u ∙ du/sec²x
= ∫ (5u+10)/u ∙ du/(u² + 4u + 5)
= ∫ (5u+10) / [u(u² + 4u + 5)] du
Partial fraction decomposition:
(5u+10) / [u(u² + 4u + 5)] = A/u + (Bu+C) / (u² + 4u + 5)
Multiply by u(u² + 4u + 5):
5u+10 = A(u² + 4u + 5) + u(Bu+C)
5u+10 = Au² + Bu² + 4Au + Cu + 5A
Matching up corresponding terms,
Au²+Bu² = 0u² since no quadratic term on the L.H.S.
4Au + Cu = 5u
4A + C = 5
10 = 5A
A = 2
B = -2
C = -3
∴ ∫ (5u+10) / [u(u² + 4u + 5)] du
= ∫2/u du - ∫(2u+3) / (u² + 4u + 5) du
= 2ln|u| - ∫(2u+4) / (u² + 4u + 5) du + ∫ 1 du / (u² + 4u + 5)
= 2ln|u| - ln|u² + 4u + 5| + ∫ 1 du / ((u + 2)² + 1)
= 2ln|u| - ln|u² + 4u + 5| + arctan(u + 2)
= 2ln|tanx-2| - ln(sec²x) + arctan(tanx-2+2)
= 2ln|tanx-2| - 2ln(secx) + arctan(tanx)
= 2 ln|tanx-2)/secx)| + x
= 2ln|sinx - 2cosx| + x + C
du/dx = sec²x
dx = du/sec²x
u+2 = tanx
(u+2)² = tan²x
(u+2)² + 1 = tan²x + 1
(u+2)² + 1 = sec²x
u² + 4u + 5 = sec²x
∫ 5tanx / (tanx-2) dx
= ∫ 5(u+2)/u ∙ du/sec²x
= ∫ (5u+10)/u ∙ du/(u² + 4u + 5)
= ∫ (5u+10) / [u(u² + 4u + 5)] du
Partial fraction decomposition:
(5u+10) / [u(u² + 4u + 5)] = A/u + (Bu+C) / (u² + 4u + 5)
Multiply by u(u² + 4u + 5):
5u+10 = A(u² + 4u + 5) + u(Bu+C)
5u+10 = Au² + Bu² + 4Au + Cu + 5A
Matching up corresponding terms,
Au²+Bu² = 0u² since no quadratic term on the L.H.S.
4Au + Cu = 5u
4A + C = 5
10 = 5A
A = 2
B = -2
C = -3
∴ ∫ (5u+10) / [u(u² + 4u + 5)] du
= ∫2/u du - ∫(2u+3) / (u² + 4u + 5) du
= 2ln|u| - ∫(2u+4) / (u² + 4u + 5) du + ∫ 1 du / (u² + 4u + 5)
= 2ln|u| - ln|u² + 4u + 5| + ∫ 1 du / ((u + 2)² + 1)
= 2ln|u| - ln|u² + 4u + 5| + arctan(u + 2)
= 2ln|tanx-2| - ln(sec²x) + arctan(tanx-2+2)
= 2ln|tanx-2| - 2ln(secx) + arctan(tanx)
= 2 ln|tanx-2)/secx)| + x
= 2ln|sinx - 2cosx| + x + C
Answered by
0
Step-by-step explanation:
The solution of this integral is given above .
Attachments:
Similar questions