Math, asked by Okumar5673, 10 months ago

5th term is 30 and 12th term is 65 find the 65th term

Answers

Answered by atahrv
28

Answer :

\large{\star\:\:\boxed{\bf{a_{65}\:=\:330}}\:\:\star}

Explanation :

Given :–

  • a₅ = 30
  • a₁₂ = 65

To Find :–

  • a₆₅ (65th Term of this A.P.)

Solution :–

We have ,

\rightarrow\sf{a_5\:=\:30}

\rightarrow\sf{a_5\:=\:a\:+\:(5\:-\:1)d}

\rightarrow\sf{30\:=\:a\:+\:4d}\:\:-----\bf{(1)}

We also have ,

\rightarrow\sf{a_{12}\:=\:65}

\rightarrow\sf{a_{12}\:=\:a\:+\:(12\:-\:1)d}

\rightarrow\sf{65\:=\:a\:+\:11d}\:\:-----\bf{(1)}

Subtracting Equation(2) from Equation(1) :-

\rightarrow\sf{65\:-\:30\:=\:(a\:+\:11d)\:-\:(a\:+\:4d)}

\rightarrow\sf{35\:=\:a\:+\:11d\:-\:a\:-\:4d}

\rightarrow\sf{35\:=\:7d}

\rightarrow\sf{d\:=\:\dfrac{35}{7}}

\rightarrow\bf{d\:=\:5}

Putting this value of 'd' in Equation(1) :-

\rightarrow\sf{30\:=\:a\:+\:4(5)}

\rightarrow\sf{30\:=\:a\:+\:20}

\rightarrow\sf{a\:=\:30\:-\:20}

\rightarrow\bf{a\:=\:10}

Now , we have

  • a = 10
  • d = 5
  • n = 65

Putting these values in the Formula :

\rightarrow\sf{a_n\:=\:a\:+\:(n\:-\:1)d}

\rightarrow\sf{a_{65}\:=\:10\:+\:(65\:-\:1)(5)}

\rightarrow\sf{a_{65}\:=\:10\:+\:(64\:\times\:5)}

\rightarrow\sf{a_{65}\:=\:10\:+\:320}

\rightarrow\boxed{\bf{a_{65}\:=\:330}}

∴ The 65th Term of this A.P. is 330 .

Similar questions