Math, asked by zainabj7498, 2 months ago

5th term of an arithmetic sequence is 21 and it's 9th term 37. What is the 1st term

Answers

Answered by amansharma264
18

EXPLANATION.

5th term of an A.P = 21.

9th term of an A.P = 37.

As we know that,

General term of an A.P.

Tₙ = a + (n - 1)d.

⇒ T₅ = 21.

⇒ a + (5 - 1)d = 21.

⇒ a + 4d = 21 ⇒ (1).

⇒ T₉ = 37.

⇒ a + (9 - 1)d = 37.

⇒ a + 8d = 37 ⇒ (2).

From equation (1) & (2), we get.

⇒ a + 4d = 21.

⇒ a + 8d = 37.

We get,

⇒ - 4d = - 16.

⇒ d = 16/4.

⇒ d = 4.

Put the value of d = 4 in equation (1), we get.

⇒ a + 4d = 21.

⇒ a + 4(4) = 21.

⇒ a + 16 = 21.

⇒ a = 21 - 16.

⇒ a = 5.

First term = a = 5.

Common difference = d = 4.

                                                                                                                           

MORE INFORMATION.

Supposition of terms in A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Five terms as : a - 2d, a - d, a, a + d, a + 2d.

(3) = Four terms as : a - 3d, a - d, a + d, a + 3d.

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{a_5 \: of \: an \: AP  = 21} \\ &\sf{a_9 \: of \: an \: AP = 37} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: find - \begin{cases} &\sf{a_1 \: of \: an \: AP}  \end{cases}\end{gathered}\end{gathered}

Concept Used :-

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

↝ 5ᵗʰ term is 21

\rm :\implies\:a \:  +  \: (5 - 1)d \:  =  \: 21

\rm :\implies\:a \:  +  \: 4d = 21

\rm :\implies\:a \:  =  \: 21 \:  -  \: 4d -  - (1)

Now,

↝ 9ᵗʰ term is 37

\rm :\implies\:a \:  +  \: (9 - 1)d = 37

\rm :\implies\:a \:  +  \: 8d \:  = 37

\rm :\implies\:21 - 4d + 8d \:  =  \: 37 \: \:  \:  \:   \:  { \green{(\because \: a \:  = 21 - 4d)}}

\rm :\implies\:4d \:  =  \: 16

 \boxed{ \pink{\rm :\implies\:d \:  =  \: 4}}

On substituting d = 4, in equation (1) is

\rm :\implies\: \boxed{ \pink{ \bf \: a = 21 - 4 \times 4 \:  =  21 - 16 = \tt \: 5}}

Similar questions