Math, asked by SmartSolver, 3 days ago

5Two consecutive angles of parallelogram are in the ratio 2:3. Find the smaller angle please send with solution I will mark brainiest ​

Answers

Answered by jitendra12iitg
16

Answer:

The answer is 72^\circ

Step-by-step explanation:

  • Concept : Consecutive angles of a parallelogram are supplementary

Since consecutive angles are in the ratio 2:3

So let these angles be 2x and 3x

Now using above concept : 2x+3x=180^\circ

                                            \Rightarrow 5x=180^\circ

                                           \Rightarrow x=\dfrac{180^\circ}{5}=36^\circ

Thus the angles are 2x=72^\circ and 3x=108^\circ

Therefore the smaller angle is 72^\circ

Answered by StarFighter
11

Answer:

Given :-

  • Two consecutive angles of a parallelogram are in the ratio of 2 : 3.

To Find :-

  • What is the smaller angle of a parallelogram.

Solution :-

Let,

\mapsto \bf First\: Angle_{(Parallelogram)} =\: 2x

\mapsto \bf Second\: Angle_{(Parallelogram)} =\: 3x

As we know that :

\footnotesize \bigstar \: \sf\boxed{\bold{\pink{Sum\: of\: two\: consecutive\: angles_{(Parallelogram)} =\: 180^{\circ}}}}\: \: \bigstar\\

According to the question by using the formula we get,

\implies \sf 2x + 3x =\: 180^{\circ}

\implies \sf 5x =\: 180^{\circ}

\implies \sf x =\: \dfrac{\cancel{180^{\circ}}}{\cancel{5}}

\implies \sf\bold{\purple{x =\: 36^{\circ}}}

Hence, the required angles of a parallelogram are :

First Angle Of Parallelogram :-

\mapsto \sf First\: Angle_{(Parallelogram)} =\: 2x

\mapsto \sf First\: Angle_{(Parallelogram)} =\: 2 \times 36^{\circ}

\mapsto \sf\bold{\red{First\: Angle_{(Parallelogram)} =\: 72^{\circ}}}\\

Second Angle Of Parallelogram :

\mapsto \sf Second\: Angle_{(Parallelogram)} =\: 3x

\mapsto \sf Second\: Angle_{(Parallelogram)} =\: 3 \times 36^{\circ}

\mapsto \sf\bold{\red{Second\: Angle_{(Parallelogram)} =\: 108^{\circ}}}\\

\therefore The smaller angle of a parallelogram is 72° .

Similar questions