Math, asked by Anonymous, 10 months ago

5x(1+1/x^2+y^2)=12 ,5y(1-1/x^2+y^2)=4 solve it for x,y​

Answers

Answered by amitnrw
4

Given :    5x(1+1/(x²+y²))=12   , 5y(1-1/(x²+y²))=4

To find :  solve it for x,y​

Solution:

5x(1+1/(x²+y²))=12

5y(1-1/(x²+y²))=4

Let say x²+y² = a

=> 5x ( 1 +  1/a)  = 12  => 5x  =   12a/(a + 1)

&  5y (  1-  1/a)  = 4    => 5y  =   4a/(a - 1)

Squaring and adding

=> (5x)² + (5y)² =  (12a/(a + 1))²  + (4a(a - 1))²

=> 25a ( a² - 1)²  =  144a² (a - 1)²  + 16a²(a + 1)²

=> 25 (a⁴ - 2a² + 1) =  144a (a² - 2a + 1)  + 16a(a² + 2a + 1)

=> 25a⁴ - 50a² + 25 = 160a³ - 256a² + 160a

=>  25a⁴ - 160a³  + 206a² -  160a + 25 = 0

=>   (a  - 5)(5a - 1) (5a²  - 6a  + 5) = 0

a = 5  or  a= 1/5    or 5a²  - 6a  + 5 leads to complex number 0.6 ± 0.8i

5x  =   12a/(a + 1)   => 5x  =  10 => x  = 2   or  5x  = 2 => x  = 2/5

5y  =   4a/(a - 1) =>  5y =  5  => y = `1    or  5y = -1  => y = -1/5

x  , y  =  ( 2, 1)   or ( 2/5 , -1/5)

Learn more:

Solve the following x+y/xy=5 and x-5/xy=7 - Brainly.in

https://brainly.in/question/8168066

solve for x and y : 8√x-15√y=-√xy,10/√x+8/√y=4 where x,y≠0

https://brainly.in/question/17713654

Answered by akshitasaxena2709
0

answer:

5x(1+1/(x²+y²))=12

5y(1-1/(x²+y²))=4

Let say x²+y² = a

=> 5x ( 1 +  1/a)  = 12  => 5x  =   12a/(a + 1)

&  5y (  1-  1/a)  = 4    => 5y  =   4a/(a - 1)

Squaring and adding

=> (5x)² + (5y)² =  (12a/(a + 1))²  + (4a(a - 1))²

=> 25a ( a² - 1)²  =  144a² (a - 1)²  + 16a²(a + 1)²

=> 25 (a⁴ - 2a² + 1) =  144a (a² - 2a + 1)  + 16a(a² + 2a + 1)

=> 25a⁴ - 50a² + 25 = 160a³ - 256a² + 160a

=>  25a⁴ - 160a³  + 206a² -  160a + 25 = 0

=>   (a  - 5)(5a - 1) (5a²  - 6a  + 5) = 0

a = 5  or  a= 1/5    or 5a²  - 6a  + 5 leads to complex number 0.6 ± 0.8i

5x  =   12a/(a + 1)   => 5x  =  10 => x  = 2   or  5x  = 2 => x  = 2/5

5y  =   4a/(a - 1) =>  5y =  5  => y = `1    or  5y = -1  => y = -1/5

x  , y  =  ( 2, 1)   or ( 2/5 , -1/5)

Similar questions