Math, asked by EASYSQUEEZE7, 9 months ago

(5X^2 - 2Y^2) X (Y^2+XY^3-8X) MUTIPLY BEST ANSWER WILL BE MARKED BRAINLIEST ^ REPRESENTS POWER PLS PLS

Answers

Answered by Rohith200422
2

Question:

\sf (5 {x}^{2}  - 2 {y}^{2} )( {y}^{2}  + x {y}^{3}  - 8x)

To find:

★ To find the value of the given expression.

Answer:

The value of the given expression  \underline{ \sf 2 {y}^{4}   -  5 {x}^{3}  {y}^{3}   -  5 {x}^{2}  {y}^{2}   +  2x {y}^{5}   -  16x {y}^{2}   + 40 {x}^{3} }

Given:

★ An expression is given.

Step-by-step explanation:

\sf \bold{(5 {x}^{2}  - 2 {y}^{2} )( {y}^{2}  + x {y}^{3}  - 8x)}

  \\

Now multiplying the polynomials,

  \\

 \hookrightarrow \sf (5 {x}^{2}  \times  {y}^{2} ) + (5 {x}^{2}  \times  x {y}^{3} ) + (5 {x}^{2}  \times   - 8x)

\hookrightarrow \sf \underline{ 5 {x}^{2} {y}^{2}  + 5 {x}^{3} {y}^{3}   - 40 {x}^{3}  }

  \\

\hookrightarrow \sf ( - 2 {y}^{2}  \times   {y}^{2})  + ( - 2 {y}^{2}  \times  x {y}^{3}) +  ( - 2 {y}^{2}  \times   - 8x)

 \hookrightarrow \sf \underline{  - 2 {y}^{4}  - 2x {y}^{5}  + 16x {y}^{2} }

  \\

Now adding the polynomials,

  \\

 \implies \sf 5 {x}^{2} {y}^{2}  + 5 {x}^{3} {y}^{3}   - 40 {x}^{3}  - 2 {y}^{4}  - 2x {y}^{5}  + 16x {y}^{2}

  \\

Now Arranging through powers ,

  \\

\implies \sf - 2 {y}^{4}  + 5 {x}^{3}  {y}^{3}  + 5 {x}^{2}  {y}^{2}  - 2x {y}^{5}  + 16x {y}^{2}  - 40 {x}^{3}

  \\

Since first polynomial is in negative now changing to positive .

  \\

\implies  \boxed{  \sf 2 {y}^{4}   -  5 {x}^{3}  {y}^{3}   -  5 {x}^{2}  {y}^{2}   +  2x {y}^{5}   -  16x {y}^{2}   + 40 {x}^{3} }

 \therefore The value of the given expression is 2y⁴ - 5x³y³ - 5x²y² + 2x\underline{\bold{{y}^{5}}} - 16xy² + 40x³ .

Similar questions