Math, asked by shahgupteshwar, 11 months ago

5x^2-4-8x
Find zeros of polynomial and verify relationships between the zeros and coefficient

Attachments:

Answers

Answered by Aloi99
14

Given:-

p(x)=0

→5x²-8x-4=0

\rule{200}{1}

To find:-

→Find the Zeros of polynomial and verify the relationship b/w its coefficient?

\rule{200}{1}

Proof:-

→5x²-8x-4=0

๛S=-8[Sum of Equation]

๛P=-20[Product of Equation]

-10×2=-20

-10+2=-8

→5x²-10x+2x-4=0

→5x(x-2)+2(x-2)=0

๛5x+2=0

๛x-2=0

\rule{200}{1}

•Taking x-2

→x-2=0

๛x=2→(α)

\rule{200}{1}

•Taking 5x+2

→5x+2=0

→5x=-2

๛x= \frac{-2}{5} →(β)

\rule{200}{1}

a=5,b=-8,c=-4

→α+β= \frac{-b}{a}

→2+(-⅖)= \frac{-(-8)}{5}

[°•° Cross Multiply LHS]

 \frac{10-2}{5} = \frac{8}{5}

 \frac{8}{5} = \frac{8}{5}

✓erified

\rule{200}{1}

→αβ= \frac{c}{a}

→2×(-⅖)= \frac{-4}{5}

→-⅘=-⅘

✓erified

\rule{200}{2}

Answered by Anonymous
26

Answer:

5x {}^{2}  - 8x - 4 = 0 \\ 5x {}^{2} - 10x  + 2x   - 4 = 0 \\ 5x(x - 2) +2(x - 2) \\ (x - 2)(5x + 2) \\ x = 2 \\ x =   - \frac{2}{5}  \\ \\  therefore \\ \alpha  = 2 \\  \beta  =  -  \frac{2}{5}  \\  \\ here \: \\ a = 5 \:  \:  \:  \: b =  - 8 \:  \:  \:  \: c - 4  \\  \\ sum \: of \: zeroes =  \alpha  +  \beta  =  -  \frac{b}{a}  \\  \alpha  +  \beta  =  -  \frac{ - 8}{5}  \\ 2 -  \frac{2}{5}  =  \frac{8}{5}  \\  \frac{8}{5}  =  \frac{8}{5}  \\  \\ product \: of \: zeroes =  \alpha  \beta  =  \frac{c}{a}  \\  \alpha  \beta  =  \frac{ - 4}{ 5}  \\ 2 \times  \frac{ - 2}{5}  =  \frac{ - 4}{5}  \\  \frac{ - 4}{5}  =  \frac{ - 4}{5}

Step-by-step explanation:

Hope it helps you.......

please mark it as brainliest.....

Similar questions