Math, asked by leishamudaliyar, 9 months ago

5x^2=4x+7 quadratic equations by square method

Answers

Answered by Anonymous
2

\huge\underline{ \underline{ \bf{ \blue{ \: solution \: : =  }}}}    </p><p>

by using quadratic formula,

 \bf {\boxed{\frac{ -b +  -  \sqrt{ {b }^{2}  - 4ac} }{2a}}}

⠀⠀⠀⟹⠀x =  \frac{ - ( - 4) +  -  \sqrt{ - 4 {}^{2}  - 4 \times 5 \times ( - 7)}  }{2 \times 5}

⠀⠀⟹⠀⠀x =  \frac{ - 4 +  -  \sqrt{16 - 4 \times 5( - 7)} }{10}

⠀⠀⠀⠀⟹⠀⠀x =  \frac{4 +  -  \sqrt{16 - 140} }{10}

⠀⠀⠀⟹⠀⠀x =  \frac{4 +  -  \sqrt{156} }{10}

⠀⠀⠀⠀⟹⠀⠀x =  \frac{4 +  \times 2 \sqrt{39} }{10}

⠀⠀⠀⠀⟹⠀⠀x =  \frac{2 \sqrt{39} + 4 }{10}

⠀⠀⠀⟹⠀⠀{\bf{\boxed{\pink{x =  \frac{ \sqrt{39}  + 2}{ 5}}}}}

⠀⠀⠀⠀⟹⠀x =   \frac{ - 4 - 2 \sqrt{39} }{10}

⠀⠀⠀⠀⟹{\boxed{\pink{x =  \frac{2 -  \sqrt{39} }{5}}}}

Answered by luckypriya077
1

completing \: square \: method.. \\  {5x}^{2}  - 4x - 7 = 0 \\ divide \: with \: 5.. \\  { \frac{5x}{5} }^{2}  -  \frac{4x}{5}   =  \frac{7}{5}  \\ add  \:  ({ \frac{2}{5} )}^{2}  \: on \: both \: sides \\  {x}^{2}  -  \frac{4x}{5}  +  ({ \frac{2}{5} )}^{2}  =  \frac{7}{5}  + ( { \frac{2}{5} )}^{2}  \\( {x - \frac{2}{5}  )}^{2}  =  \frac{7}{5}  +    \frac{4}{25}  \\ x -  \frac{2}{5}  =  \sqrt{ \frac{39}{25} }  \\ x -  \frac{2}{5}  =   \sqrt{ \frac{39}{5} }  \\ x =  \sqrt{39 \div 5 +  \frac{2}{5} }  \\

Similar questions
Math, 1 year ago
Math, 1 year ago