Math, asked by Samayrabhati, 4 months ago

5x+3y= -11 , 2x+4y= -10

Answers

Answered by anindyaadhikari13
8

Required Answer:-

Given:

  • 5x + 3y = -11.
  • 2x + 4y = -10.

To Find:

  • The values of x and y.

Solution:

Given that,

→ 5x + 3y = -11 — (i)

→ 2x + 4y = -10

→ 2(x + 2y) = -10

→ x + 2y = -5

→ x = -2y - 5

Substituting the value of x in (i), we get,

→ 5(-2y - 5) + 3y = -11

→ -10y - 25 + 3y = -11

→ -7y = -11 + 25

→ -7y = 14

→ y = 14/-7

→ y = -2

Putting the value of y, we get,

→ x = -2 × (-2) - 5

→ x = 4 - 5

→ x = -1

Therefore,

 \sf \leadsto\left \{  \large{{x =  -1} \atop {y =  -2}} \right.

Answer:

  • x = -1 and y = -2.
Answered by ItzMarvels
23

Required Answer

Give Data:

  • 5x+3y= -11 ---- e.q1
  • 2x+4y= -10 --- e.q2

To find:

  • The values of x and y = ?

Solution:

By multiplying e.q1 with 2.

5x+3y= -11

2(5x+3y= -11)

10x + 6y = -22 ---- e.q3

By multiply e.q2 with 5.

2x+4y= -10

5(2x+4y= -10)

10x + 20y = - 50 ----- e.q4

Now,By subtracting e.q3 and e.q4.

 \mathcal{ \cancel{10x} + 20y = - 50}  \\ \mathcal{ \underline{ \cancel{10x} + 6y = -22}} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 14y \:  =  - 28 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:   \: \: y =  \frac{ \cancel{{ - 28}}} { \cancel{14}}  \\  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  - 2

Now put value of y in e.q2.

 \mathcal{ \:  \:  \:  \:  \:  \:  \: 2x+4y= -10} \\ \mathcal{2x + 4( -2) =  - 10} \\  \mathcal{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2x - 8 =  - 10}  \\  \mathcal{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2x =  - 10 + 8} \\  \mathcal{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2x =  - 2} \\  \mathcal{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = \frac{ - 2}{2}  } \\  \mathcal{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: x =  - 1}

So the values are

X = -1

Y = -2

Similar questions