Math, asked by Anonymous, 15 days ago

5x-3y=11 and 2x-y=5 find x and y​

Answers

Answered by varadad25
3

Answer:

The values of x and y are x = 4 & y = 3.

Step-by-step-explanation:

The given linear equations are

5x - 3y = 11 - - - ( 1 ) &

2x - y = 5 - - - ( 2 )

y = 2x - 5

By substituting this value in equation ( 1 ), we get,

5x - 3y = 11 - - - ( 1 )

⇒ 5x - 3 * ( 2x - 5 ) = 11

⇒ 5x - 6x + 15 = 11

⇒ - x = 11 - 15

⇒ - x = - 4

x = 4

By using this value,

y = 2x - 5

⇒ y = 2 * 4 - 5

⇒ y = 8 - 5

y = 3

∴ The values of x and y are x = 4 & y = 3.

Answered by Anonymous
60

STEP-BY-STEP EXPLANATION:

.

  \bf We  \: have,  \\

  \tt 5x - 3y = 11 \:  \:  \: ...(1) \\  \tt 2x - y = 5 \:  \:  \:  \:  \: \:  \:  \:  ...(2) \\

.

 \bf By \:  Elimination \:  Method, \\

.

 \tt Multiply \:   \: Eq [2]  \:  \: by  \:  \: 3  \:  \: to \:  \:  make  \:  \:  \:  \\ \tt   the \:  \:  coefficients  \:  \: of  \:  \: y \:  \:  equal,

 \tt 6x - 3y = 15 \:  \:  \: ...(3) \\

.

 \tt Substract  \:  \: Eq [1] \:  \:  from \:  \:  Eq [3]  \:  \: to \\  \tt  eliminate  \:  \: y,  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

:\implies\tt (6x - 3y) - (5x - 3y) = 15 - 11 \\

:\implies\tt 6x - 3y - 5x + 3y = 4 \\

:\implies\tt x = 4 \\

.

 \tt Substitute \:  \:  this  \:  \: value  \:  \: of  \:  \: y  \:  \: in \:  \:  Eq[2],

 \tt 2x - y = 5 \:  \:  \: ...(2) \\

:\implies\tt 2(4) - y = 5 \\

:\implies\tt 8 - y = 5 \\

:\implies\tt y = 8 - 5 \\

:\implies\tt y = 3 \\

.

 \bf{ Hence, \tt x = 4 \:  \: and \:  \: y = 3} \\  \\

.

VERIFICATION,

.

  \tt 5x - 3y = 11 \:  \:  \: ...(1) \\

:\implies\tt 5(4) - 3(3) = 11 \\

:\implies\tt 20 - 9 = 11 \\

:\implies\tt 11 = 11 \\

:\implies\tt LHS =  RHS \\

.

:\implies\tt 2x - y = 5 \:  \:  \: ...(2) \\

:\implies\tt 2(4) - 3 =  5 \\

:\implies\tt 8 - 3 = 5 \\

:\implies\tt 5 = 5 \\

:\implies\tt LHS  = RHS  \\

.

.

REQUIRED ANSWER,

.

  • \tt x = 4 \:  \: and \:  \: y = 3 \\
Similar questions