Math, asked by bpandit2005, 11 months ago

5x + 3y = 9 ……. (i)
2x + 3y = 12 ……… (ii)

Attachments:

Answers

Answered by amitkumar44481
88

AnsWer :

x = 3. and y = -2.

Given :

We have equation,

  • 5x + 3y = 9.
  • 2x -3y = 12.

Solution :

We have two equation,

 \tt5x + 3y = 9. -  -  - (1)

 \tt2x - 3y = 12. -  -  - (2)

Let's apply Elimination method, on both Equation

[tex]\begin{tabular}{ 1-1 } 5x + 3y = 9. & \\ 2x -3y = 12. & \\ \cline{1-1} 7x = 21. & \\ \cline{1-1} \end{tabular}[/tex]

 \implies \tt x =  \frac{21}{7}

 \implies \tt x =  3.

Now, Putting the value of x in equation (2), We get.

 \implies \tt 2x - 3y = 12.

 \implies \tt 2(3)- 3y = 12.

 \implies \tt 6- 3y = 12.

 \implies \tt - 3y = 12 - 6

 \implies \tt y = -   \frac{12 - 6}{3}

 \implies \tt y =  - 2.

\rule{200}3

Let's Verify :

 \implies \tt5x + 3y = 9.

 \implies \tt 5(3) + 3( - 2) = 9.

 \implies \tt 15 - 6 = 9.

 \implies \tt 9 = 9.

Therefore, the value of x = 3 and y= -2.

Answered by anshi60
60

 \huge{ \underline{ \underline{ \green{ \sf{ SoLuTiOn :-}}}}}

5x + 3y = 9 ---------------(1)

2x - 3y = 12 --------------(2)

By applying the substitution method =>

Equation (1)=>

5x + 3y = 9 \\  \\ 5x = 9 - 3y \\  \\ x =  \frac{9 - 3y}{5}   - (3) \\  \\ putting \: x =  \frac{9 - 3y}{5} in \: equ. \: (2) \\  \\ 2( \frac{9 - 3y}{5} ) - 3y = 12 \\  \\  \frac{18 - 6y}{5}  - 3y = 12 \\  \\

18 - 6y - 15y = 60

18 - 21y = 60

- 21y = 60 - 18

- 21y = 42

y = - 42/21

y = - 2

then putting the value of y = -2 in equ. (3)=>

x =  \frac{9 - 3y}{5}  \\  \\ x =  \frac{9 - 3( - 2)}{5}  \\  \\ x =  \frac{9 + 6}{5}  \\  \\ x =  \frac{15}{5}  \\  \\ x = 3 \: \\  \\  \huge{\blue{\underline{\purple{\mathbb{AnSwER}}}}} \\  \\ {\red{\boxed{\large{\bold{x = 3 \: and \: y =  - 2}}}}}

___________________

Similar questions