Math, asked by gopikrishna7272, 5 months ago

5x- 4y + 8 = 0
7x+6y-9 = 0​

Answers

Answered by kks1505
6

Answer:

x= -6/29

y= 101/58

Step-by-step explanation:

5x-4y= -8 -(i) ×3

7x+6y= 9 -(ii) ×2

The equations becomes,

15x-12y= -24 -(i)

14x+12y= 18 -(ii)

Adding (i) and (ii),

15x-12y= -24

14x+12y= 18

__________

29x = -6

=> x = -6/29

And,

5x-4y =-8 (i)

=> 5×-6/29 -4y= -8

=> -4y = -8 + 30/29

=> -4y = (-232 +30)/29

=> -4y = -202/29

=> -y = -202/29×4

=> -y = -101/58

=> y =101/58

Answered by PharohX
8

Answer:

 \green{ \large \rm \: GIVEN   \:  \: \: EQUATIONs } \pink{ \rightarrow}

 \sf \: 5x- 4y + 8 = 0   \:  \:  \:  \:  \:  \:  \: ............(i)  \\  \sf7x + 6y - 9 = 0 \:  \:  \:    \:  \: ............(ii)

 \rm\large \green{TO \:  \:  \:  FIND} \pink{ \rightarrow}

 \sf \: value \: \: of \: x \: and \: y

 \green{ \large \rm \: SOLUTION} \pink{ \rightarrow}

 \sf \: From \:  eq \: . (i)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \: 5x - 4y + 8 = 0 \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \green{ \rightarrow} \sf \: 5x  =   4y- 8  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \:  \:  \:   \:  \green{ \rightarrow} \sf \: x =  \frac{4y - 8}{5}  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(iii)

 \sf \: Put \:  the \:  value  \: of \:  x  \: in  \: eq. (ii) \:   \\  \sf \: we\: get..  \\  \sf7x + 6y - 9 = 0 \\ \\  \green{ \rightarrow} \sf \: 7 \bigg( \frac{4y - 8}{5}  \bigg) + 6y = 9 \\   \\ \sf \: \green{ \rightarrow}   \frac{7(4y - 8)}{5}  + 6y = 9  \:  \:  \:  \: \\   \\ \sf \: \green{ \rightarrow} \frac{28y - 56 + 5(6y)}{5}  = 9 \\ \\   \sf \: \green{ \rightarrow} \frac{28y - 56 + 30y}{5}  = 9  \:  \: \\ \\   \sf \: \green{ \rightarrow} \frac{58y - 56}{5}  = 9  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\   \\ \sf\green{ \rightarrow}58y - 56 = 9 \times 5  \:  \:  \:  \:  \: \\  \\  \sf \: \green{ \rightarrow} \: 58y = 45 + 56  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf \: \green{ \rightarrow} \: 58y \:  = 101  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \: \green{ \rightarrow}y=  \frac{101}{58} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\

 \sf \: Put \:  the \:  value  \: of  \: y  \: i n  \: eq.   (iii) \\  \sf \: we \: get.. ....

  \displaystyle \: \sf \: x =  \frac{4y - 8}{5}  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \green{ \rightarrow}   \sf \: x =  \frac{4 \big( \frac{101}{58})  - 8}{5}  \\ \\   \sf \: \green{ \rightarrow}x =  \frac{ \frac{404}{58}  - 8}{5}   \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf\green{ \rightarrow}x =  \frac{ \frac{404 - 464}{58} }{5}  \\  \\ \sf \: \green{ \rightarrow}x =  \frac{  \frac{ - 60}{58} }{5} \\  \\  \sf \: \green{ \rightarrow} \: x =  -  \frac{6}{29}

 \sf \: Hence  \:  \green{ \boxed{x =   - \frac{6}{29}}} \:  , \green{ \boxed{ y =  \frac{101}{58} }}

Similar questions