Math, asked by singhsribrigesh, 6 months ago

5x+6y=11 2x-y=1 Solve by substitution method

Answers

Answered by aditya05Feb2009GM
0

Answer:

5x−6y=2 ------- (1)

6x−5y=9 ------ (2)

From equation 1:

6y=5x−2

y=

6

5x−2

Substitute the value of y in equation 2 :

6x−5y=9

6x−5(

6

5x−2

)=9

36x−25x+10=54

11x=54−10

X=

11

44

=4

Now, Substitute x=4 in equation 1 :

5x−6y=2

5×4−6y=2

20−2=6y

18=6y

y=

6

18

=3

Therefore the solution is: x=4 and y=3

Answered by Mister360
44

Step-by-step explanation:

Let

{\boxed {5x+6y=11}}........(1)

{\boxed{2x-y=1}}........(2)

From equation (1)

{:}\longrightarrow5x+6y=11

{:}\longrightarrow6y=11-5x

{:}\longrightarrowy={\frac {11-5x}{6}}..........(3)

Substitute the value of y in Equation (2)

{:}\longrightarrow2x- ({\frac {11-5x}{6}}=1

{:}\longrightarrow{\frac {12x-(11-5x)}{6}}=1

{:}\longrightarrow{\frac {12x-11+5x}{6}}=1

{:}\longrightarrow{\frac {17x-11}{6}}=1

{:}\longrightarrow17x-11=6

{:}\longrightarrow17x=6+11

{:}\longrightarrow17x=17

{:}\longrightarrowx={\frac {17}{17}}

{:}\longrightarrow{\underline{\boxed{\bf {x=1}}}}

Substitute the value of x in Equation (3)

{:}\longrightarrowy={\frac{11-5x}{6}}

{:}\longrightarrowy={\frac {11-5 (1)}{6}}

{:}\longrightarrowy={\frac {11-5}{6}}

{:}\longrightarrowy={\frac {6}{6}}

{:}\longrightarrow{\underline{\boxed{\bf {y=1}}}}

\therefore{\underline{\boxed{\bf {(x,y)=(1,1)}}}}

Similar questions