Math, asked by sonalrajyaguru968, 10 months ago

х+у= 5xy.

3x+2y = 13xy elimination method

Answers

Answered by Infochikhubudokai
1

Answer:

Please forgive my handwriting cause it's bad right now cause I thought u were in a hurry and I sent pics, Sir please do mark my answer Brainliest

Attachments:
Answered by Anonymous
5

\bold\red{\underline{\underline{Answer:}}}

\bold{Value \ of \ x \ is \frac{1}{2} \ and}

\bold{y \ is \frac{1}{3}}

\bold\orange{Given:}

\bold{The \ given \ equations \ are}

\bold{=>x+y=5xy}

\bold{=>3x+2y=13xy}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ equations \ are}

\bold{=>x+y=5xy...(1)}

\bold{=>3x+2y=13xy...(2)}

\bold{Multiply \ eq(1) \ by \ 2, \ we \ get}

\bold{=>2x+2y=10xy...(3)}

\bold{Subtract \ eq(3) \ from \ eq(2) \ we \ get}

\bold{=>x=3xy}

\bold{Substitute \ value \ of \ x \ in \ eq(1) \ we \ get}

\bold{=>y=2xy}

________________________________

\bold{=>x=3xy}

\bold{=>\frac{x}{x}=3y}

\bold{=>3y=1}

\bold{=>y=\frac{1}{3}}

________________________________

\bold{=>y=2xy}

\bold{=>\frac{y}{y}=2x}

\bold{=>2x=1}

\bold{=>x=\frac{1}{2}}

\bold\purple{\tt{\therefore{Value \ of \ x \ is \frac{1}{2} \ and}}}

\bold\purple{y \ is \frac{1}{3}}

Similar questions