Math, asked by emileemcdowell, 6 months ago

5y=35+10x in standard form

Answers

Answered by Anonymous
83

Answer:

Given :-

  • 5y = 35 + 10x

To Find :-

  • Change 5y = 35 + 10x into standard form.

Solution :-

General Form of Standard form is :-

Ax + By + C =0

So, 5y = 35 + 10x can be written in Standard form by following the steps below :-

  • 5y = 35 + 10x
  • 35 + 10x - 5y = 0
  • 10x - 5y + 35 = 0

Where,

A = 10

B = -5

C = 35

Answer :-

Standard form of 5y = 35 + 10x :-

10x - 5y + 35 = 0.

More to know :-

The Standard form of the equation of a straight line is :

Ax + Bx = C, where A > 0, and if possible A, B and C are relatively prime integers.

Answered by Swarup1998
1

Given data:

The equation 5y = 35 + 10x

To find:

The standard form of the above equation

Step-by-step explanation:

  • Standard form - we must know that the standard form of a linear equation is ax + by = c, where a, b and c are integers.

Given, 5y = 35 + 10x

First, transpose 5y to the right hand side and the equation becomes:

0 = 35 + 10x - 5y

Now, transpose 35 to the left hand side and the equation becomes:

- 35 = 10x - 5y

Now, interchange the sides and we get:

10x - 5y = - 35

or, (10) x + (- 5) y = (- 35)

This form is equivalent to ax + by = c.

Final Answer:

Standard form of 5y = 35 + 10x is (10) x + (- 5) y = (- 35).

Similar questions