(5y-4)/6 + (3y+10)/2 = 4y+1 Solve the following linear equation and Verify the solution.
Answers
Solution :
Putting the value of y in the given equation to both side,we get;
Thus,
Verified .
Solution :
\sf{\dfrac{(5y-4)}{6} +\dfrac{(3y+10)}{2} =4y+1}
6
(5y−4)
+
2
(3y+10)
=4y+1
\begin{lgathered}\longrightarrow\sf{\dfrac{(5y-4)}{6} +\dfrac{(3y+10)}{2} =4y+1}\\\\\\\longrightarrow\sf{\dfrac{(5y-4)+(9y+30)}{6} =4y+1\:\:\: \bigg[\therefore taking\:L.C.M\:of\:6\:\&\:2\bigg]}\\\\\\\longrightarrow\sf{\dfrac{5y-4+9y+30}{6}=4y+1}\\\\\\\longrightarrow\sf{5y-4+9y+30=6(4y+1)}\\\\\longrightarrow\sf{14y+26=24y+6}\\\\\longrightarrow\sf{14y-24y=6-26}\\\\\longrightarrow\sf{-10y=-20}\\\\\longrightarrow\sf{y=\cancel{-20/-10}}\\\\\longrightarrow\bf{y=2}\end{lgathered}
⟶
6
(5y−4)
+
2
(3y+10)
=4y+1
⟶
6
(5y−4)+(9y+30)
=4y+1[∴takingL.C.Mof6&2]
⟶
6
5y−4+9y+30
=4y+1
⟶5y−4+9y+30=6(4y+1)
⟶14y+26=24y+6
⟶14y−24y=6−26
⟶−10y=−20
⟶y=
−20/−10
⟶y=2
Putting the value of y in the given equation to both side,we get;
\begin{lgathered}\longrightarrow\sf{\dfrac{5\times 2-4}{6} +\dfrac{3\times 2+10}{2} =4\times 2+1}\\\\\\\longrightarrow\sf{\dfrac{10-4}{6} +\dfrac{6+10}{2} =8+1}\\\\\\\longrightarrow\sf{\cancel{\dfrac{6}{6}} +\cancel{\dfrac{16}{2} }=9}\\\\\\\longrightarrow\sf{1+8=9}\\\\\longrightarrow\bf{9=9}\end{lgathered}
⟶
6
5×2−4
+
2
3×2+10
=4×2+1
⟶
6
10−4
+
2
6+10
=8+1
⟶
6
6
+
2
16
=9
⟶1+8=9
⟶9=9
Thus,
Verified .