5y2+40y-12/5y+10y2-4=y+8/1+2y
Answers
Given :
(5y² + 40y - 12) / (5y + 10y² - 4) = (y + 8) / (1 + 2y)
To find :
Value of y
Solution :
(5y² + 40y - 12) / (5y + 10y² - 4) = (y + 8) / (1 + 2y)
(5y² + 40y - 12)(1 + 2y) = (y + 8)(5y + 10y² - 4)
5y² + 10y³ + 40y + 80y² - 12 - 24y = 5y² + 10y³ - 4y + 40y + 80y² - 32
- 12 - 24y = - 4y - 32
24y - 4y = 32 - 12
20y = 20
y = 1
Verification :
LHS :
(5y² + 40y - 12) / (5y + 10y² - 4)
(5 + 40 -12) / (5 +10 - 4)
33 / 11
3
RHS :
(y + 8) / (1 + 2y)
(1 + 8) / (1 + 2)
9 / 3
3
LHS = RHS
Hence y = 1
if a(y+z) = b(z+x) = c(x+y) and out of a,b,c on two of them are equal then show that, y-z = z-x = x-y/a (b-c) b(c-a) c(a-b)
Answer a(y+z) = b (z+x) = c(x+y)
y-z = z+x = x-y
a(b-c) b(c-a) c(a-b)
a (y+z) = b(z+x) = c(x+y)
abc abc abc
y+z = z+x = x+y = k
bc ac ab
x+y = k
ab-ac
similarly x-y = k
c(a-b)
x+y-(z-x) = k
a(b-c)
y-z
a(b-c)
y+z-(x+y)
bc-ab
zx = k-10
b(c-a)
y-z = z-x = x-y for 1,2 fo
a(b-c) b(-a) c(a-b)