(6,1) ,(8,2) ,(9,x) ,(p,3) are the vertices of a parallelogram. Find the values of p and x.
Answers
Answered by
2
Let A = (6 , 1)
B = (8, 2)
C = (9, x)
D = (P , 3)
we know,
properties of parallelogram ,
mid point of diagonal AC = midpoint of diagonal BD
use section formula,for finding mid point
Mid point of AC = {(9 + 6)/2 , (1 + x)/2 }
mid point of BD = {(8+P)/2 , (3 + 2)/2}
so, for x- co-ordinate
(9 + 6)/2 = (8+P)/2
15 = 8 + P
P = 7
similarly, for y - co-ordinate
(1 + x)/2 = (3 + 2)/2
1 + x = 5
x = 4
B = (8, 2)
C = (9, x)
D = (P , 3)
we know,
properties of parallelogram ,
mid point of diagonal AC = midpoint of diagonal BD
use section formula,for finding mid point
Mid point of AC = {(9 + 6)/2 , (1 + x)/2 }
mid point of BD = {(8+P)/2 , (3 + 2)/2}
so, for x- co-ordinate
(9 + 6)/2 = (8+P)/2
15 = 8 + P
P = 7
similarly, for y - co-ordinate
(1 + x)/2 = (3 + 2)/2
1 + x = 5
x = 4
Attachments:
Answered by
2
In parallelogram diagonal bisects each other.
Therefore
midpoint of AC = midpoint of BD
Therefore,
Now, In same way
Answer:- x = 4 and p = 7
Therefore
midpoint of AC = midpoint of BD
Therefore,
Now, In same way
Answer:- x = 4 and p = 7
Attachments:
MayankTamakuwala1296:
please mark my answer as brainliest
Similar questions
Computer Science,
7 months ago
Social Sciences,
7 months ago
Physics,
7 months ago
Physics,
1 year ago
Biology,
1 year ago
Science,
1 year ago