Math, asked by singhanand007007, 2 months ago

6. (1 - tan A)2 + (1 + tan A)2 = 2 sec-A​

Answers

Answered by Ladylaurel
6

Correct Question :

Prove :

\sf{{(1 - tan \: A)}^{2} + {(1 + tan \: A)}^{2} = 2 \: {sec}^{2} \: A}

Answer :-

Given to prove :

\sf{{(1 - tan \: A)}^{2} + {(1 + tan \: A)}^{2} = 2 \: {sec}^{2} \: A}

Solution :

L.H.S = \sf{{(1 - tan \: A)}^{2} + {(1 + tan \: A)}^{2}}

\sf{\longrightarrow \: {(1 - tan \: A)}^{2} + {(1 + tan \: A)}^{2}}

\sf{\longrightarrow \:  (1 + {tan \: A}^{2} \cancel{- 2 \: tanA}) \: + (1  + {tan \: A}^{2} + \cancel{2 \: tanA})}

\sf{\longrightarrow \:  (1 + {tan \: A}^{2}) + (1 + {tan \: A}^{2})}

\sf{\longrightarrow \: 2(1 + {tan \: A}^{2})}

\sf{\longrightarrow \: 2 \: {sec}^{2} \: A} \: = R.H.S \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {}_{.. \: .. \: ..} \:  \lgroup \: \sf{1 + {tan}^{2} \: A = {sec}^{2} \: A} \rgroup

Hence, Proved!

⠀⠀⠀⠀⠀ ⠀_______________________

Remember :-

  • \sf{1 + {tan}^{2} \: A = {sec}^{2} \: A}
Similar questions