Math, asked by kamalpreetsing3, 8 months ago

ਦੋ ਖੰਬੇ ਜਿੰਨ੍ਹਾਂ ਦੀਆਂ ਉਚਾਈਆਂ 6 ਮੀ: ਅਤੇ 11 ਮੀ: ਹਨ ਅਤੇ ਸਮਤਲ ਭੂਮੀ ਤੇ ਖੜੇ ਹਨ। ਜੇਕਰ ਉਹਨਾਂ ਦੇ ਹੇਠਲੇ ਸਿਰਿਆਂ ਦੇ ਵਿਚਕਾਰਲੀ ਦੂਰੀ 12 ਮੀ: ਹੋਵੇ ਤਾਂ ਉਹਨਾਂ ਦੇ ਉਪਰਲੇ ਸਿਰਿਆਂ ਦੇ ਵਿਚਕਾਰਲੀ ਦੂਰੀ ਹੋਵੇਗੀ: Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m, the distance between their tops is: 6 मीटर और 11 मीटर की ऊँचाई वाले दो खंभे समतल जमीन पर खड़े हैं। अगर उनके नीचे यदि सिरों के बीच की दूरी 12 मीटर है, तो उनके ऊपरी सिरों के बीच की दूरी होगी: *
14 ਮੀ: (m)(मी.)
12 ਮੀ: (m) (मी.)
13 ਮੀ: (m) (मी.)
11 ਮੀ: (m) (मी.)​

Answers

Answered by Anonymous
33

\huge\red{Answer}

Given: Two poles of heights 6m and 11m stand vertically upright on a plane ground. Distance between their foot is 12 m.

To find: Distance between their tops.

Let CD be the pole with height 6m.

AB is the pole with height 11m, distance between their foot i.e. DB is 12 m.

Let us assume a point E on the pole AB which is 6m from the base of AB.

Hence

AE = AB − 6 = 11 − 6 = 5 m

Now in right triangle AEC, Applying Pythagoras theorem

AC2 = AE2 + EC2

AC2 = 52 + 122

(since CDEB forms a rectangle and opposite sides of rectangle are equal)

AC 2 = 25 + 144

AC 2 = 169

AC=13cm

Thus, the distance between their tops is 13m.

Hence correct answer is C.

Attachments:
Answered by Anonymous
2

Answer:

c is correct answer..............

Similar questions