Math, asked by jivanshantiamc7910, 2 months ago

6,13 .20 form an ap then find the 100th term

Answers

Answered by RvChaudharY50
26

Given :-

  • first term = a = 6
  • common difference = 20 - 13 = 13 - 6 = 7

To Find :-

  • 100th term of AP .

Solution :-

we know that,

  • an = a + (n - 1)d .
  • a = first term .
  • d = common difference .
  • n = nth term .

so,

→ a100 = 6 + (100 - 1)7

→ a100 = 6 + 99 * 7

→ a100 = 6 + 693

→ a100 = 699 (Ans.)

Hence, 100th term of AP is 699.

Answered by INSIDI0US
77

Step-by-step explanation:

\underline{\underline{\maltese\: \: \textbf{\textsf{Given}}}}

  • First term, a = 6.
  • Common difference = 20 - 13 = 13 - 6 = 7.

\underline{\underline{\maltese\: \: \textbf{\textsf{To\ Find}}}}

  • We have to find out the 100th term of A.P.

\underline{\underline{\maltese\: \: \textbf{\textsf{Solution}}}}

  • The 100th term of A.P is 699.

\underline{\underline{\maltese\: \: \textbf{\textsf{Formula\ Used}}}}

 \sf {\bigstar\ a_n\ =\ a\ +\ (n\ -\ 1)d}

~ Where,

  •  \sf {a_n\ is\ the\ n^{th}\ term\ in\ the\ sequence.}
  •  \sf {a\ is\ the\ first\ term.}
  •  \sf {d\ is\ the\ common\ difference.}
  •  \sf {n\ is\ the\ n^{th}\ term.}

\underline{\underline{\maltese\: \: \textbf{\textsf{Calculations}}}}

 \sf \mapsto {a_n\ =\ a\ +\ (n\ -\ 1)d}

  • On substituting the values :-

 \sf \mapsto {a_{100}\ =\ 6\ +\ (100\ -\ 1)7}

 \sf \mapsto {a_{100}\ =\ 6\ +\ 99 \times 7}

 \sf \mapsto {a_{100}\ =\ 6\ +\ 693}

 \sf \mapsto {\red {a_{100}\ =\ 699.}}

 {\therefore{\underline{\sf{Hence\ the\ 100^{th}\ term\ of\ A.P\ is\ \bf 699.}}}}

Similar questions