Math, asked by palasha2, 1 year ago

√6/√2+√3 +3×√2/√6+√3 -4×√3/√6+√2

Attachments:

Answers

Answered by DaIncredible
8
Hey friend,
Here is the answer you were looking for:

Identitiy used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

So,
 \frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }  +  \frac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  -  \frac{4 \sqrt{3} }{ \sqrt{6}   +   \sqrt{2} }  \\

On rationalizing the denominator we get,

 =  \frac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }  \times  \frac{ \sqrt{2}  -  \sqrt{3} }{ \sqrt{2}  -  \sqrt{3} }  +  \frac{3 \sqrt{2} }{ \sqrt{6} +  \sqrt{3}  }  \times  \frac{ \sqrt{6}  -  \sqrt{3} }{ \sqrt{6} -  \sqrt{3}  }  -  \frac{4 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  \times  \frac{ \sqrt{6} -  \sqrt{2}  }{ \sqrt{6} -  \sqrt{2}  }  \\  \\  =  \frac{ \sqrt{6} ( \sqrt{2} -  \sqrt{3} ) }{ {( \sqrt{2} )}^{2}  -  {( \sqrt{3} )}^{2} }  +  \frac{3 \sqrt{2}( \sqrt{6} -  \sqrt{3} )  }{ {( \sqrt{6}) }^{2} -  { \sqrt{3} )}^{2}  }  -  \frac{4 \sqrt{3} ( \sqrt{6} -  \sqrt{2} ) }{ {( \sqrt{6} )}^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  =  \frac{ \sqrt{12} -  \sqrt{18}  }{2 - 3}  +  \frac{3 \sqrt{12} - 3 \sqrt{6}  }{6 - 3}  -  \frac{4 \sqrt{18}  - 4 \sqrt{6} }{6 - 2}  \\

On splitting some numbers we get :

 =  \frac{ \sqrt{2 \times 2 \times 3}  -  \sqrt{3 \times 3 \times 2} }{  - 1 }  +  \frac{3 \sqrt{2 \times 2 \times 3} - 3 \sqrt{6}  }{3}  -  \frac{4 \sqrt{3 \times 3 \times 2}  - 4 \sqrt{6} }{4}   \\  \\  =  - (2 \sqrt{3}  - 3 \sqrt{2} ) +  \frac{3 \times 2 \sqrt{3}  - 3 \sqrt{6} }{3}  -  \frac{4 \times 3 \sqrt{2}  - 4 \sqrt{6} }{4}  \\  \\  =  - 2 \sqrt{3}  + 3 \sqrt{2}  + 2 \sqrt{3}  -  \sqrt{6}  - 3 \sqrt{2}  +  \sqrt{6}  \\  \\  = 0

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

palasha2: thank u sooooooo much
DaIncredible: my pleasure... Glad to help :)
Answered by Sanjayvatts
3

Answer:

Step-by-step explanation:

R

Similar questions