6^2x+1÷36=216 find the value of x
Answers
Answered by
310
Hi...☺
Here is your answer...✌
![{6}^{2x + 1} \div 36 = 216 \\ \\ {6}^{2x + 1} = 216 \times 36 \\ \\ {6}^{2x +1 } = {6}^{3} \times {6}^{2} \\ \\ {6}^{2x + 1} = {6}^{5} \\ \\ equating \: th e\: power \: of \: 6 \\ we \: get \\ \\ 2x + 1 = 5 \\ \\ 2x = 5 - 1 \\ \\ 2x = 4 \\ \\ x = 2 {6}^{2x + 1} \div 36 = 216 \\ \\ {6}^{2x + 1} = 216 \times 36 \\ \\ {6}^{2x +1 } = {6}^{3} \times {6}^{2} \\ \\ {6}^{2x + 1} = {6}^{5} \\ \\ equating \: th e\: power \: of \: 6 \\ we \: get \\ \\ 2x + 1 = 5 \\ \\ 2x = 5 - 1 \\ \\ 2x = 4 \\ \\ x = 2](https://tex.z-dn.net/?f=+%7B6%7D%5E%7B2x+%2B+1%7D+++%5Cdiv+36+%3D+216+%5C%5C++%5C%5C++%7B6%7D%5E%7B2x+%2B+1%7D++%3D+216+%5Ctimes+36+%5C%5C++%5C%5C++%7B6%7D%5E%7B2x+%2B1+%7D++%3D++%7B6%7D%5E%7B3%7D++%5Ctimes++%7B6%7D%5E%7B2%7D++%5C%5C++%5C%5C++%7B6%7D%5E%7B2x+%2B+1%7D++%3D++%7B6%7D%5E%7B5%7D++%5C%5C++%5C%5C++++equating+%5C%3A+th+e%5C%3A+power+%5C%3A+of+%5C%3A+6+%5C%5C+we+%5C%3A+get+%5C%5C++%5C%5C+2x+%2B+1+%3D+5+%5C%5C++%5C%5C+2x+%3D+5+-+1+%5C%5C++%5C%5C+2x+%3D+4+%5C%5C++%5C%5C+x+%3D+2)
Here is your answer...✌
Answered by
23
Answer:
$$\begin{lgathered}{6}^{2x + 1} \div 36 = 216 \\ \\ {6}^{2x + 1} = 216 \times 36 \\ \\ {6}^{2x +1 } = {6}^{3} \times {6}^{2} \\ \\ {6}^{2x + 1} = {6}^{5} \\ \\ equating \: th e\: power \: of \: 6 \\ we \: get \\ \\ 2x + 1 = 5 \\ \\ 2x = 5 - 1 \\ \\ 2x = 4 \\ \\ x = 2\end{lgathered}$$
Similar questions