Math, asked by sritampradhan91, 3 months ago

6/3√2-2√3=3√2-a√3 find value a​

Answers

Answered by anindyaadhikari13
79

Required Answer:-

Given:

\dag\ \boxed{\tt \dfrac{6}{3\sqrt{2}-2\sqrt{3}}=3\sqrt{2}-a\sqrt{3}}

To Find:

  • The value of a.

Solution:

Given that,

\tt\implies \dfrac{6}{3\sqrt{2}-2\sqrt{3}}=3\sqrt{2}-a\sqrt{3}

Multiplying both numerator and denominator by (3√2 + 2√3), we get,

\tt\implies \dfrac{6 \times (3\sqrt{2}+2\sqrt{3})}{(3\sqrt{2}-2\sqrt{3})(3\sqrt{2}+2\sqrt{3})}=3\sqrt{2}-a\sqrt{3}

Simplifying the result,

\tt\implies \dfrac{6 \times (3\sqrt{2}+2\sqrt{3})}{(3\sqrt{2})^{2}-(2\sqrt{3})^{2}}=3\sqrt{2}-a\sqrt{3}

\tt\implies \dfrac{6 \times (3\sqrt{2}+2\sqrt{3})}{18-12}=3\sqrt{2}-a\sqrt{3}

\tt\implies \dfrac{6 \times (3\sqrt{2}+2\sqrt{3})}{6}=3\sqrt{2}-a\sqrt{3}

\tt\implies(3\sqrt{2}+2\sqrt{3})=3\sqrt{2}-a\sqrt{3}

\tt\implies 2\sqrt{3}=-a\sqrt{3}

Dividing both sides by √3, we get,

\tt\implies 2=-a

\tt\implies a=-2

Hence, the value of a is -2.

Answer:

  • The value of a is -2.

•••♪

Answered by Anonymous
22

Required Answer :

  • The value of a is -2.

Concept :

Here, we'll use the method of rationalisation to find the value of a. After rationalising, we'll simplify the resulting number to obtain the appropriate value of a.

Step by step explanation :

Given :

\frac{6}{3 \sqrt{2 } - 2 \sqrt{3}  }  = 3 \sqrt{2 }  - a \sqrt{3}

To find :

  • Value of a.

Explanation :

We have given,

\frac{6}{3 \sqrt{2 } - 2 \sqrt{3}  }  = 3 \sqrt{2 }  - a \sqrt{3}

Now, rationalising the denominator by multiplying both denominator and numerator by (3√2 + 2√3),

→ \frac{6 \times (3 \sqrt{2} + 2 \sqrt{3} ) }{ {(3 \sqrt{2} })^{2}  -  {(2 \sqrt{3}) }^{2}  }   = 3 \sqrt{2 }  - a \sqrt{3}

→  \frac{6 \times (3 \sqrt{2} + 2 \sqrt{3})  }{18 - 12}  = 3 \sqrt{2}  - a \sqrt{3}

→  \frac{6 \times (3 \sqrt{2} + 2 \sqrt{3})  }{6}  = 3 \sqrt{2}  - a \sqrt{3}

  • Cancelling 6 in the LHS.

→ (3 \sqrt{2}  + 2 \sqrt{3} ) = 3 \sqrt{2}  - a \sqrt{3}

  • Cancelling 3 \sqrt{2} on both the sides.

→ 2 \sqrt{3}  = -a \sqrt{3}

  • Dividing both sides by √3 for getting the value of a.

→ 2 = -a

a =  - 2 ✔️

Similar questions