Math, asked by poornimapoojary28, 2 months ago

(6+√3)/(7-4√3) = a + b√3

Answers

Answered by allubhujia45
1

Step-by-step explanation:

This is ans

Happy to help

Attachments:
Answered by Anonymous
9

Answer :-

\implies\sf \dfrac{6+\sqrt3}{7-4\sqrt3} = a + b\sqrt3

Solving LHS :-

\implies\sf \dfrac{6+\sqrt3}{7-4\sqrt3}

Rationalizing the denominator :-

\implies\sf \left(\dfrac{6+\sqrt3}{7-4\sqrt3}\right) \times \left(\dfrac{7+4\sqrt3}{7+4\sqrt3}\right)

\implies\sf \dfrac{(6+ \sqrt3)(7+4\sqrt3)}{(7+4\sqrt3)(7-4\sqrt3)}

\implies\sf \dfrac{6(7 + 4 \sqrt 3) + \sqrt3(7 + 4 \sqrt 3)}{7^2 - (4\sqrt3)^2}

\implies\sf \dfrac{42 + 24\sqrt3 + 7\sqrt3 + 4\times 3}{49-48}

\implies\sf \dfrac{42 + 12 + 31\sqrt3}{1}

\implies\sf 54 + 31\sqrt3

Comparing LHS and RHS :-

\implies\sf 54 + 31\sqrt3 = a + b\sqrt3

  • a = 54
  • b = 31

Similar questions