6√(3)x^2+7x-√(3)=0
Factorise this equation and get answer in integers or fraction
Answers
Answered by
124
Answer :
Given,
6√3x² + 7x - √3 = 0
➠ 6√3x² + 9x - 2x - √3 = 0
➠ 3√3x (2x + √3) - 1 (2x + √3) = 0
➠ (2x + √3) (3√3x - 1) = 0
So, 2x + √3 = 0, or, 3√3x - 1 = 0
∴ The required solution be
x = (- √3/2), 1/(3√3)
#MarkAsBrainliest
Given,
6√3x² + 7x - √3 = 0
➠ 6√3x² + 9x - 2x - √3 = 0
➠ 3√3x (2x + √3) - 1 (2x + √3) = 0
➠ (2x + √3) (3√3x - 1) = 0
So, 2x + √3 = 0, or, 3√3x - 1 = 0
∴ The required solution be
x = (- √3/2), 1/(3√3)
#MarkAsBrainliest
Answered by
10
Given,
It is given that 6√3x² + 7x -√3 = 0.
To find,
We have to find the factors of 6√3x² + 7x -√3.
Solution,
The factors of 6√3x² + 7x -√3 are -√3 /2 and 1/3√3 .
We can simply find the factors of 6√3x² + 7x -√3 by using splitting the middle term method.
= 6√3x² + 7x -√3
= 6√3x²+ 9x-2x-√3
Taking 3√3x common from first two terms and -1 from last two terms, we get
= 3√3 x(2x + √3 )-1(2x+√3)
Taking (2x+√3) common, we get
= (2x+√3) (3√3x-1)
⇒ Either first expression is zero or last expression is zero, we get
x = -√3 /2 , x = 1/3√3
Hence, the factors of 6√3x² + 7x -√3 are -√3 /2 and 1/3√3.
Similar questions