Math, asked by bhritinagi8363, 10 months ago

6-4√2/6+4√2 =a+b√2
simplify each of the following by rationalising the denominator

Answers

Answered by ItzArchimedes
6

GIVEN:

  • 6 - 4√2/6 + 4√2 = a + b√2

TO FIND:

  • a , b

SOLUTION:

6 - 4√2/6 + 4√2 = a + b√2

Taking LHS and simplifying by rationalizing th denominator

→ (6 - 4√2)(6 - 4√2)/(6 + 4√2)(6 - 4√2)

Using

♦ (a - b)(a - b) = (a - b)² = a² - 2ab + b²

♦ (a + b)(a - b) = a² - b²

→ 6² - 2(4√2)(6) + (4√2)²/6² - (4√2)²

→ 36 - 48√2 + 32/36 - 32

→ 68 - 48√2/4

Taking common

→ 4(17 - 12√2)/4

→ 17 - 12√2

→ 17 + (-12)(√2)

Now, comparing with RHS

→ 17 + (- 12√2) = a + b√2

a = 17 [.Ans]

b = - 12. [.Ans]

Answered by BloomingBud
13

Given

\bf Simplify \:\: \dfrac{6-4\sqrt{2}}{6+4\sqrt{2}}=a+b\sqrt{2}

Solution:

\bf  \dfrac{6-4\sqrt{2}}{6+4\sqrt{2}}\times \dfrac{6-4\sqrt{2}}{6-4\sqrt{2}}\:\:

\bf = \dfrac{(6-4\sqrt{2})^{2}}{(6)^{2} - (4\sqrt{2})^{2}}

[ ∴ (a+b)(a-b) = (a)² - (b)² ]

\bf = \dfrac{(6)^{2} + (4\sqrt{2})^{2} - 2 \times (6) \times (4\sqrt{2} )}{36 - 32}

[ ∴ (a - b)² = (a)² + (b)² - 2ab ]

\bf = \dfrac{36 + 32 - 48\sqrt{2}}{4}

\bf = \dfrac{68 - 48\sqrt{2}}{4}

\bf = \dfrac{ \cancel{4} (17 -12\sqrt{2})}{ \cancel{4} }

[Taking 4 as common ]

\bf = 17 - 12\sqrt{2} = a+b\sqrt{2}

so,

\bf = 17 + (-12\sqrt{2}) = a+b\sqrt{2}

a = 17

And

b = -12

Similar questions