Math, asked by shivika0413, 8 months ago

√(6)−√(5)÷√(6)+√(5)=a-b=√(30) Find the values of a and b.


No spam please. It is the important question.​

Answers

Answered by Anonymous
1

Solution:-

 \to \rm \:  \dfrac{ \sqrt{6} -  \sqrt{5}  }{ \sqrt{6} +  \sqrt{5}  }  = a \:  - b \sqrt{30}

  \to\dfrac{ \sqrt{6}  -  \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }  \times  \dfrac{ \sqrt{6} -  \sqrt{5}  }{ \sqrt{6}  -  \sqrt{5} }

 \to \rm \:  \dfrac{( \sqrt{6} -  \sqrt{5}  ){}^{2}  }{( \sqrt{6}) {}^{2} - ( \sqrt{5} ) {}^{2}   }

 \to \rm \:  \dfrac{( \sqrt{6}) {}^{2}   +  (\sqrt{5} ) {}^{2}  - 2 \times  \sqrt{6}   \times  \sqrt{5} }{6 - 5}

 \to \rm \:  {6  +  5 - 2 \sqrt{30} }

 \to \rm11 - 2 \sqrt{30}

So a = 11 and b = - 2

we use identity

( a - b )² = a²+ b² - 2ab

(a - b )(a + b ) = a² - b²

Answered by gugan64
12

Solution:-

 \to \bf \frac{ \sqrt{6} -  \sqrt{5}  }{ \sqrt{6} +  \sqrt{5}  }  = a - b \sqrt{30}

\to  \bf \frac{ \sqrt{6} -  \sqrt{5}  }{ \sqrt{6} +  \sqrt{5}  }  \times \frac{ \sqrt{6} -  \sqrt{5}  }{ \sqrt{6}  -   \sqrt{5}  }

 \to  \bf \frac{ {( \sqrt{6} -  \sqrt{5}  )}^{2} }{  { \sqrt{6} }^{2} -  { \sqrt{5} }^{2}  }

 \to  \bf  \frac{ { \sqrt{6} }^{2} - 2( \sqrt{6}  \times  \sqrt{5}) +  { \sqrt{5} }^{2}   }{6 - 5}

 \to\bf \frac{ {6}  - 2( \sqrt{30}  ) +  { \ {5} }  }{1}

 \bf\to6  -  2 \sqrt{30}  + 5

 \bf\to11  -  2 \sqrt{30}

Therefore:-

  • The value of (a) = 11

  • The value of (b) = -2

Identities used:-

  •  \sf {\boxed{ \sf{{ {(x - y)}^{2} =  {x}^{2}  - 2xy -  {y}^{2}  }}}}

  •  \sf {\boxed{ \sf{{ {x}^{2} -  {y}^{2}  = (x + y) \times (x - y) }}}}
Similar questions