(6 -6 5
14 -13 10
7 -6 4)
eigen value
Answers
Step-by-step explanation:
Here is your answer ......
To find the eigenvalues, we need to calculate the determinant of the matrix A-λI.
|A - λI| = |(6 -6 5) - λ(1 0 0)|
|(14 -13 10) - λ(0 1 0)|
|(7 -6 4) - λ(0 0 1)|
Expanding the determinant of the matrix gives:
|A - λI| = (6-λ) * ((-13-λ)(4-(-6-λ)) - (-6)(10-(-6-λ))) - (-6)((-13-λ)(7-(-6-λ)) - (-6)(14-(-6-λ))) + 5((-13-λ)(7-(-6-λ)) - (-6)(14-(-6-λ)))
This simplifies to:
|A - λI| = (6-λ)(-13-λ+10-λ+6+λ) - (-6)(-13-λ+7-λ+6+λ) + 5(-13-λ+7-λ+6+λ)
= (6-λ)(-7-λ) - (-6)(-7-λ) + 5(-7-λ)
= (6-λ)(-7-λ) + 6(7+λ) + 35(7+λ)
= -7λ^2 - 13λ + 42 + 42λ + 210 + 245λ
= -λ^2 - 20λ + 697
So the eigenvalues of the matrix are the roots of the characteristic polynomial, which is -λ^2 - 20λ + 697 = 0.
Therefore, the eigenvalues of the matrix are:
λ1 = (20 + √(20^2 - 4697)) / 2 = 10 + √(196)
λ2 = (20 - √(20^2 - 4697)) / 2 = 10 - √(196)
Learn more about Eigen Value on:
brainly.in/question/16326851
brainly.in/question/35712872
#SPJ3