Math, asked by canis1, 1 year ago

√6+√6+√6+√6.................infinity

Answers

Answered by aziz12
0
n n+1i.e 6 factors 2×3 i choosed this becausee their difference is 1 then here n+1 is 3
Answered by anonymous64
5

\mathcal{\tiny{\boxed{\bold{Heya\:mate. \: Solution\: below}}}}

==========================================

\red{\mathfrak{\: Answer \: ↓↓↓\: }}

\bf{\large{To\:Find \: -}}\sf{\sqrt{6 +  \sqrt{6  +  \sqrt{6 +  \sqrt{6... \infty } } } } }

\sf{let \: x \:  =  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6... \infty } } } }\:\:\: ....eq \:i}

\sf{=  > x =  \sqrt{6 +  (\sqrt{6 +  \sqrt{6 +  \sqrt{6... \infty } } } } } )

\sf{ =  > x =  \sqrt{6 + x}  \:  \:  \: ... \:  \: from \: eq \: i}

\bf{\red{Squaring\: both \:sides,}}

 \sf{=  >   {x}^{2}  = 6 + x}

 \sf{=  >  {x}^{2}  - x - 6 = 0}

 \sf{=  >  {x}^{2}  - 3x + 2x - 6 = 0}

 \sf{=  > x(x - 3) + 2(x - 3) = 0}

 \sf{=  > (x - 3)(x + 2 ) = 0}

 \sf{=  > x =  - 3 \:  \:  \:  \:  \: \:  or \:  \:  \:  \:  \:  \: x = 2}

But, the value can't be negative.

Therefore, x = 3

==========================================

\mathcal{\green{\bold{Thank \: you..}}}

Similar questions