Physics, asked by anu114324, 19 days ago

6. A car starts from rest and moves with constant acceleration. The ratio of distance covered by the car in nth second to that covered in n seconds is (1) 2n-1/2n^2 (2) n^2/2n-1 (3) 2n-1/n^ 2 (4) 1:n​

Answers

Answered by ayesha2093623
1

ur answer

I hope it's helpful

Attachments:
Answered by viperisbackagain
4

 \huge \red {answer}

 \bf \large \underline{given - } \: u = 0 \: . \: a = const. \: time  = n \: sec \\  \\  \bf \large \underline{to \: find - } \:  \frac{n {}^{th} }{n} sec \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bf \boxed{ \green { snth = u +  \frac{1}{2}a(2n - 1)  }} \\  \bf \boxed{ \green{sn = un +  \frac{1}{2}an {}^{2}  }}

 { \bf now \large \boxed{  \frac{ {sn}^{th} }{sn \:  \:  \: }  =  \frac{ \frac{1}{2} a(2n - 1)}{ \frac{1}{2 } {n}^{2}  } }}

 {\large \boxed{  \frac{ {sn}^{th} }{sn \:  \:  \: }  =  \frac{ \frac{}{} (2n - 1)}{ \frac{}{ } {n}^{2}  } }}

Now option 3 is correct

Similar questions