Math, asked by sunderchandila0080, 5 months ago

6. A milk tank is in the form of cylinder whose radius is 1.5 m and
length is 7 m. Find the quantity of milk in litres that can be stored
in the tank?
111​

Answers

Answered by skorlepara
7

Answer:

49.5 litre

Step-by-step explanation:

Volume of cylinder = Pi r^2 h

= (22/7) (1.5) (1.5) ((7)

= 22 * 2.25

= 49.5 Ltr

Answered by SarcasticL0ve
25

\sf Given \begin{cases} & \sf{Radius\:of\:cylinder = \bf{1.5\;m}}  \\ & \sf{Height\:of\:cylinder = \bf{7\;m}}  \end{cases}\\ \\

To find: Quantity of milk in litres that can be stored in the tank?

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(15,2)(0,32){2}{\sf{1.5 m}}\put(14,17.5){\sf{7 m}}\end{picture}

⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Volume_{\;(cylinder)} = \pi r^2h}}}}\\ \\

Therefore,

Volume of milk tank,

⠀⠀⠀

:\implies\sf Volume_{\;(milk\:tank)} = \dfrac{22}{7} \times (1.5)^2 \times 7\\ \\

:\implies\sf Volume_{\;(milk\:tank)} = \dfrac{22}{ \cancel{7}} \times 2.25 \times \cancel{7}\\ \\

:\implies\sf Volume_{\;(milk\:tank)} = 22 \times 2.25\\ \\

:\implies\sf Volume_{\;(milk\:tank)} = 49.5\;m^3\\ \\

We know that,

⠀⠀⠀

  • 1 m² = 1000 L

⠀⠀⠀

:\implies{\underline{\boxed{\frak{\purple{Volume_{\;(milk\:tank)} = 49500\;litres}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Hence\; Quantity\;of\;milk\;that\;can\;be\;stored\;in\;tank\;is\; {\textsf{\textbf{49500\;Litres}}}.}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\  \\

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area\ formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

Similar questions