6. ABCD is a kite and A = C. If CAD = 60° and CBD = 45°,find
1=BCD
2=CDA
Attachments:
Answers
Answered by
8
Step-by-step explanation:
Given: Angle ACD=CAD=60°, angle CBD=45°.
(I). Let the Intersecting point of diagnosis be O
We know that: One of the diagonals of a kite is the perpendicular bisector of the other,
So, angle BOC=90°.
Consider ∆BOC,
B+C+O=180°.
45°+90°+C=180°(Sum of interior angle of triangle=180°)
C=180°-135°
angle BCA=45°.
=> Angle BCD= angle BCA+ angle ACD
=> 45°+60°
=> 105°.
(ii).Angle BCD=BAD=105°, Angle ABC=90°.
[Sum of interior angles of a quadrilateral=360°]
105°+105°+90°+ADC=360°
ADC=360°-300°
Angle ADC=60°.
Similar questions