Math, asked by rishikasahu2007, 1 month ago

6 boys and 8 girls can finish a piece of work in 14 days while 8 boys and 12 girls can finish a piece of work in 10 days . Find the time taken by one boy alone and one girl alone to finish the work ?​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that

Number of days taken by 1 boy alone to finish the work be x days and Number of days taken by 1 girl alone to finish the work be y days.

So, it implies,

\rm :\longmapsto\:1 \: day \: work \: of \: 1 \: boy \:  =  \: \dfrac{1}{x}

\rm :\longmapsto\:1 \: day \: work \: of \: 1 \: girl \:  =  \: \dfrac{1}{y}

According to statement,

6 boys and 8 girls can finish a piece of work in 14 days.

So,

\rm :\longmapsto\:1 \: day \: work \: of \: 6 \: boys\:  =  \: \dfrac{6}{x}

and

\rm :\longmapsto\:1 \: day \: work \: of \: 8 \: girls\:  =  \: \dfrac{8}{y}

\rm :\implies\:\dfrac{6}{x}  + \dfrac{8}{y}  = \dfrac{1}{14}  -  -  -  - (1)

According to statement again,

8 boys and 12 girls can finish a piece of work in 10 days.

\rm :\longmapsto\:1 \: day \: work \: of \: 6 \: boys\:  =  \: \dfrac{8}{x}

and

\rm :\longmapsto\:1 \: day \: work \: of \: 12 \: girls\:  =  \: \dfrac{12}{y}

So,

\rm :\implies\:\dfrac{8}{x}  + \dfrac{12}{y}  = \dfrac{1}{10}  -  -  -  - (2)

Now, multiply equation (1) by 4 and equation (2) by 3, we get

\rm :\implies\:\dfrac{24}{x}  + \dfrac{32}{y}  = \dfrac{2}{7}  -  -  -  - (3)

and

\rm :\implies\:\dfrac{24}{x}  + \dfrac{36}{y}  = \dfrac{3}{10}  -  -  -  - (4)

On Subtracting equation (3) from (4), we get

\rm :\longmapsto\:\dfrac{4}{y}  = \dfrac{3}{10}  - \dfrac{2}{7}

\rm :\longmapsto\:\dfrac{4}{y}  = \dfrac{21 - 20}{70}

\rm :\longmapsto\:\dfrac{4}{y}  = \dfrac{1}{70}

\bf\implies \:y = 280

On Substituting y = 280 in equation (1), we get

\rm :\implies\:\dfrac{6}{x}  + \dfrac{8}{280}  = \dfrac{1}{14}

\rm :\longmapsto\:\:\dfrac{6}{x}  + \dfrac{1}{35}  = \dfrac{1}{14}

\rm :\longmapsto\:\:\dfrac{6}{x} =  \dfrac{1}{14}  - \dfrac{1}{35}

\rm :\longmapsto\:\:\dfrac{6}{x} =  \dfrac{5 - 2}{70}

\rm :\longmapsto\:\:\dfrac{6}{x} =  \dfrac{3}{70}

\rm :\longmapsto\:\:\dfrac{2}{x} =  \dfrac{1}{70}

\bf\implies \:x = 140

Hence,

Number of days taken by 1 boy alone to finish the work be 140 days

and

Number of days taken by 1 girl alone to finish the work be 280 days.

Similar questions