(6) cos A sin B + sin A. cos B, afe sin A = 4/5 or cos B = 12/13
Answers
Answered by
2
Step-by-step explanation:
Cos(A+B)= cosAcosB - sinAsinB
cosA=4/5 by pythogreas rule sinA=3/5
cosB =12/13 SinB = 5/13
cos(A+B)= 4/5* 12/13 - 3/5 * 5/13
cos(A+B)= 48/65 - 15/65
cos(A+B)= 33/65
2. sin(A-B) = SinAcosB - cosAsinB
sin(A-B)= 3/5× 12/13 - 4/5 × 5/13
sin(A-B) = 36/65 - 20/65
sin(A-B)= 16/65 is answer
Similar questions