Math, asked by m3337339320719, 5 months ago

6 Differtiate with resped to x, if
y=2/x^3
+ Sinx​

Answers

Answered by Anonymous
26

Solution :

\sf{Function\:of\:y = \dfrac{2}{x^{3}} + sin(x)} \\ \\

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d}{dx}\bigg[\dfrac{2}{x^{3}} + sin(x)\bigg]} \\ \\

\sf Here,  \: the  \: function \:  of  \: y  \: can  \: be \:  written  \: as 2x^{-3} \:  + sin(x), \\ \sf (As  \: according \:  to \: the \: rules  \: of \:  exponent \:  i.e, \:  \dfrac{1}{x^{n}} = x^{-n}) \\ \\

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d}{dx}[2x^{-3} + sin(x)]} \\ \\

\textsf{Now, by using the sum rule of differentiation, we get :} \bullet \underline{\sf{Power\:rule\:of\: Differentiation}} \\ \\ \sf{\dfrac{d}{dx}[f(x) + g(x)] = \dfrac{d}{dx}[f(x)] + \dfrac{d}{dx}[g(x)]} \\ \\

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d(2x^{-3})}{dx} + \dfrac{d[sin(x)]}{dx}} \\ \\

\textsf{Now, by applying the power rule of differentiation and derivative of sin(x), we get :} \\ \\ \bullet \underline{\sf{Power\:rule\:of\: Differentiation}} \\ \sf{\dfrac{d(x^{n})}{dx} = n\cdot x^{(n - 1)}} \\ \\ \bullet\underline{\sf{Derivative\:of\:sin(x)}} \\ \\ \sf{\dfrac{d[sin(x)]}{dx} = cos(x)} \\ \\

:\implies \sf{\dfrac{dy}{dx} = -3\cdot 2x^{(-3 - 1)} + cos(x)} \\ \\

:\implies \sf{\dfrac{dy}{dx} = -6x^{-4} + cos(x)} \\ \\

\boxed{\therefore \sf{\dfrac{d}{dx}\bigg[\dfrac{2}{x^{3}} + sin(x)\bigg] = -6x^{-4} + cos(x)}} \\ \\

Similar questions