Math, asked by itzsehaj, 10 hours ago

6. DL and BM are the heights on sides AB and AD respectively of parallelogram ABCD (Fig 11.24). If the area of the parallelogram is 1470 cm2, AB = 35 cm and AD = 49 cm, find the length of BM and DL.
no spam

Attachments:

Answers

Answered by apple4u
15

Answer:

area of IIgm=base × atitude

1470=AB×DL

1470=35×DL

DL=42cm

similarly

1470=AD×BM

BM=30cm

Answered by mathdude500
29

\large\underline{\sf{Solution-}}

Given that,

  • ABCD is a parallelogram such that AB = 35 cm and AD = 49 cm.

  • Area of parallelogram ABCD = 1470  \rm \: cm^2

  • DL and BM are the heights on sides AB and AD respectively of parallelogram ABCD.

Now,

ABCD is a parallelogram with base AB and corresponding height is DL.

So,

\rm \: Area_{(parallelogram \: ABCD)} = AB \times DL \\

On substituting the values, we get

\rm \: 1470 = 35 \:  \times \: DL \\

\bf\implies \:DL \:  =  \: 42 \: cm \\

Again,

ABCD is a parallelogram with base AD and corresponding height is BM.

So,

\rm \: Area_{(parallelogram \: ABCD)} \:  =  \: AD \times BM

\rm \: 1470 = 49 \times BM

\bf\implies \:BM \:  =  \: 30 \: cm \\

Hence,

\begin{gathered}\begin{gathered}\bf\: \bf\implies \:Length \: of \: \begin{cases} &\tt{DL \:  =  \: 42 \: cm} \\ \\  &\tt{BM \:  =  \: 30 \: cm} \end{cases}\end{gathered}\end{gathered}

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions