Math, asked by charviarya, 9 months ago

6. Evaluate: cos^2 30° cos^2 45° + 4 sec^2 60° + 1/2 cos^2 90° – 2 tan^2 60°

Answers

Answered by Nabh2006
2

cos 30 is = √3/2

and cos 45 = 1/√2

sec 60 = 2

tan 60= √3

then we can write

cos^2 30 cos^2 45 + 4 sec^2 60 + 1/2 cos^2 90 - 2 tan^2 60  is now

= (√3/2) ^2 X (1/√2)^2 + 4 X (2)^2 + 1/2 X 0 - 2 X (√3)^2  

= 3/4 X 1/2 + 16 + 0 - 6

= 3/8 + 10

= (3+80)/8

= 83/8

Answered by Anonymous
25

{ \tt { \large \underline {\blue{ solution}}}}

{ \rm{ {cos}^{2} 30 \degree \: {cos}^{2} 45 \degree +4{sec}^{2} 60 \degree +  \dfrac{1}{2} {cos}^{2} 90 \degree -  {tan}^{2}90 \degree  }}

{ \rm{ =  { \dfrac{ (\sqrt{3} )}{2} }^{2}  \times  {1}^{2}  + 4 \times  {2}^{2}  +  \dfrac{1}{2} \times  {0}^{2}  - 2 \times  { (\sqrt{3} )}^{2}  }}

{ \rm{ =  { \dfrac{ 3}{4} }  \times  {1}  + 4 \times  4+  \dfrac{1}{2} \times  {0}- 2 \times  { {3} }  }}

{ \rm{ =  { \dfrac{ 3}{4} }  \times  {1}  + 16+  0- 2 \times  { {3} }  }}

{ \rm{ =  { \dfrac{ 3}{4} }    + 16 - 6  }}

{ \rm{ =  { \dfrac{ 3}{4} }    + 10  }}

{ \rm{ =  \dfrac{3 + 40}{4} }}

{ \rm{ =   \dfrac{43}{4}  }}

{ \rm{ = 10.75}}

──────────────────────────

{ \tt { \large \underline {\blue{ more \: info}}}}

{ \rm{sin =  \dfrac{p}{h} }}

{ \rm{cos =  \dfrac{b}{h} }}

{ \rm{tan =  \dfrac{p}{b} }}

{ \rm{cosec =  \dfrac{h}{p} }}

{ \rm{sec =  \dfrac{h}{b} }}

{ \rm{sec =  \dfrac{b}{p} }}

Similar questions