Math, asked by shrikhandeshamal9, 6 months ago

(6).
Examine the function f(x)= x3 - 5x2 + 8x - 4 for maxima and minima.​

Answers

Answered by nirman95
215

To examine:

The function f(x)= x3 - 5x2 + 8x - 4 for maxima and minima.

Calculation:

f(x) =  {x}^{3}  - 5 {x}^{2}  + 8x - 4

 \implies \: {f}^{'}  (x) =  \dfrac{d \: f(x)}{dx}

 \implies \: {f}^{'}  (x) =  \dfrac{d( {x}^{3}   -   5{x}^{2}  + 8x - 4)}{dx}

 \implies \: {f}^{'}  (x) = 3 {x}^{2}   - 10x + 8

For Maxima/Minima , f'(x) = 0

 \implies \: 3 {x}^{2}   - 10x + 8 = 0

 \implies \: 3 {x}^{2}   - 6x - 4x + 8 = 0

 \implies \: 3x(x  - 2) - 4( x  - 2) = 0

 \implies \: (3x -  4)( x  - 2) = 0

Either x = 4/3 or 2.

Now, calculating f"(x):

 \implies \: {f}^{'}  (x) = 3 {x}^{2}   - 10x + 8

 \implies \: {f}^{"}  (x) = 6x - 10

_______________________________

 \implies \: {f}^{"}  (x)  \bigg|_{x =  \frac{4}{3} }  = 6( \frac{4}{3} ) - 10

 \implies \: {f}^{"}  (x)  \bigg|_{x =  \frac{4}{3} }  =  - 2

 \implies \: {f}^{"}  (x)  \bigg|_{x =  \frac{4}{3} }   < 0

Hence maxima at x = 4/3.

______________________________

 \implies \: {f}^{"}  (x)  \bigg|_{x =  2 }  = 6( 2) - 10

 \implies \: {f}^{"}  (x)  \bigg|_{x =  2 }  = 2

 \implies \: {f}^{"}  (x)  \bigg|_{x =  2 }  > 0

Hence , minima at x = 2.

Answered by aniketreddy094
2

Answer:

Step-by-step explanation:

Similar questions