6. Find all the zeroes of 2x^4 - 3x^3 - 5x^2 + 9x - 3,
if its two zeroes are √3 , - √3.
Class 10
Content Quality Solution Required
Don't Spamming
Answers
Answered by
31
Given f(x) = 2x^4 - 3x^3 - 5x^2 + 9x - 3.
Given is a factor.
We know that (a + b)(a - b) = a^2 - b^2
= > (x^2 - 3) is a factor
Divide the given polynomial by (x^2 - 3).
2x^2 - 3x + 1
------------------------------------
x^2 - 3) 2x^4 - 3x^3 - 5x^2 + 9x - 3
2x^4 - - 6x^2
-----------------------------------------
-3x^3 + x^2 + 9x - 3
- 3x^3 + 9x
-----------------------------------------
x^2 - 3
x^2 - 3
-------------------------------------------
0
Now,
we should factorize 2x^2 - 3x + 1
= > 2x^2 - 3x + 1
= > 2x^2 - 2x - x + 1
= > 2x(x - 1) - 1(x - 1)
= > (2x - 1)(x - 1)
= > x = 1/2, 1.
Therefore the zeroes of the polynomial are:
Hope this helps!
Given is a factor.
We know that (a + b)(a - b) = a^2 - b^2
= > (x^2 - 3) is a factor
Divide the given polynomial by (x^2 - 3).
2x^2 - 3x + 1
------------------------------------
x^2 - 3) 2x^4 - 3x^3 - 5x^2 + 9x - 3
2x^4 - - 6x^2
-----------------------------------------
-3x^3 + x^2 + 9x - 3
- 3x^3 + 9x
-----------------------------------------
x^2 - 3
x^2 - 3
-------------------------------------------
0
Now,
we should factorize 2x^2 - 3x + 1
= > 2x^2 - 3x + 1
= > 2x^2 - 2x - x + 1
= > 2x(x - 1) - 1(x - 1)
= > (2x - 1)(x - 1)
= > x = 1/2, 1.
Therefore the zeroes of the polynomial are:
Hope this helps!
siddhartharao77:
:-)
Answered by
31
Let, m , n , o and p be its zeroes.
Given,
Quartic equation = 2x⁴ - 3x³ - 5x² + 9x - 3
Two zeroes are √3 and -√3, where ( √3 = m ) and ( -√3 = n ).
Here,
Coefficient of x⁴ ( a ) = 2
Coefficient of x³ ( b ) = -3
Coefficient of x² ( c ) = -5
Coefficient of x ( d ) = 9
Constant term ( e ) = -3
We know that,
⇒ Sum of zeroes of a quartic equation = -( Coefficient of x³ ) ÷ ( Coefficient of x⁴ )
⇒ m + n + o + p = -b/a
⇒ √3 + ( -√3 ) + o + p = -( -3 )/2
⇒ √3 - √3 + o + p = 3/2
•°• o + p = ( 3/2 ) --------------- ( 1 )
Now,
⇒ Product of zeroes = Constant term / Coefficient of x⁴
⇒ mnop = e/a
⇒ ( √3 ) ( -√3 ) op = -3/2
⇒ -3op = -3/2
⇒ op = -3 / ( 2 × -3 )
•°• op = ( 1/2 ) --------------- ( 2 )
Using identity,
⇒ ( a - b )² = ( a + b )² - 4ab
⇒ ( o - p )² = ( o + p )² - 4op
Substitute the value of ( 1 ) and ( 2 ),
⇒ ( o - p )² = ( 3/2 )² - 4( 1/2 )
⇒ ( o - p )² = ( 9/4 ) - 2
⇒ ( o - p )² = ( 9 - 8 ) / 4
⇒ ( o - p )² = 1/4
⇒ ( o - p ) = √( 1/4 )
•°• ( o - p ) = ( 1/2 ) ------------ ( 3 )
Adding ( 1 ) and ( 3 ),
⇒ o + p + o - p = ( 3/2 ) + ( 1/2 )
⇒ 2o = ( 3 + 1 ) /2
⇒ 2o = 4/2
⇒ 2o = 2
⇒ o = 2÷2
•°• o = 1
Plug the value of o in ( 3 ),
⇒o - p = 1/2
⇒ 1 - p = 1/2
⇒ 1 - ( 1/2 ) = p
⇒ ( 2 - 1 ) / 2 = p
•°• p = 1/2
Hence, two other zeroes are 1 and ( 1/2 ).
Given,
Quartic equation = 2x⁴ - 3x³ - 5x² + 9x - 3
Two zeroes are √3 and -√3, where ( √3 = m ) and ( -√3 = n ).
Here,
Coefficient of x⁴ ( a ) = 2
Coefficient of x³ ( b ) = -3
Coefficient of x² ( c ) = -5
Coefficient of x ( d ) = 9
Constant term ( e ) = -3
We know that,
⇒ Sum of zeroes of a quartic equation = -( Coefficient of x³ ) ÷ ( Coefficient of x⁴ )
⇒ m + n + o + p = -b/a
⇒ √3 + ( -√3 ) + o + p = -( -3 )/2
⇒ √3 - √3 + o + p = 3/2
•°• o + p = ( 3/2 ) --------------- ( 1 )
Now,
⇒ Product of zeroes = Constant term / Coefficient of x⁴
⇒ mnop = e/a
⇒ ( √3 ) ( -√3 ) op = -3/2
⇒ -3op = -3/2
⇒ op = -3 / ( 2 × -3 )
•°• op = ( 1/2 ) --------------- ( 2 )
Using identity,
⇒ ( a - b )² = ( a + b )² - 4ab
⇒ ( o - p )² = ( o + p )² - 4op
Substitute the value of ( 1 ) and ( 2 ),
⇒ ( o - p )² = ( 3/2 )² - 4( 1/2 )
⇒ ( o - p )² = ( 9/4 ) - 2
⇒ ( o - p )² = ( 9 - 8 ) / 4
⇒ ( o - p )² = 1/4
⇒ ( o - p ) = √( 1/4 )
•°• ( o - p ) = ( 1/2 ) ------------ ( 3 )
Adding ( 1 ) and ( 3 ),
⇒ o + p + o - p = ( 3/2 ) + ( 1/2 )
⇒ 2o = ( 3 + 1 ) /2
⇒ 2o = 4/2
⇒ 2o = 2
⇒ o = 2÷2
•°• o = 1
Plug the value of o in ( 3 ),
⇒o - p = 1/2
⇒ 1 - p = 1/2
⇒ 1 - ( 1/2 ) = p
⇒ ( 2 - 1 ) / 2 = p
•°• p = 1/2
Hence, two other zeroes are 1 and ( 1/2 ).
Similar questions
Business Studies,
8 months ago
Math,
8 months ago
Biology,
1 year ago
Math,
1 year ago
English,
1 year ago