Math, asked by shpanjabi2003, 1 year ago

6) Find all trigonometric functions of angle in
standard position whose terminal arm passes
through point (3,-4).​

Answers

Answered by TanikaWaddle
90

Answer:

Step-by-step explanation:

Let

x=3 and y=-4

r= the length of a line segment drawn from the origin to the point.

r=\sqrt{x^{2}+y^{2}  }

r=\sqrt{3^{2}+(-4)^{2}  }

r=\sqrt{25}

r=5

sin\alpha =\frac{y}{r} =\frac{-4}{5}

cos\alpha =\frac{x}{r} =\frac{3}{5}

tan\alpha =\frac{y}{x} =\frac{-4}{3}

cot\alpha =\frac{x}{y} =\frac{3}{-4}

sec\alpha =\frac{r}{x} =\frac{5}{3}

cosec\alpha =\frac{r}{y} =\frac{5}{-4}

Answered by lublana
22

Answer with Step-by-step explanation:

Given point :(3,-4)

x=3 and y=-4

r=\sqrt{x^2+y^2}

Using the formula

r=\sqrt{3^2+(-4)^2}

r=\sqrt{9+16}=5

We know that

sin\theta=\frac{y}{r}, cos\theta=\frac{x}{r}

Using the formula

sin\theta=\frac{-4}{5}=-\frac{4}{5}

cos\theta=\frac{3}{5}

sec\theta=\frac{1}{cos\theta}=\frac{1}{\frac{3}{5}}=\frac{5}{3}

cosec\theta=\frac{1}{sin\theta}=-\frac{5}{4}

tan\theta=\frac{sin\theta}{cos\theta}

tan\theta=\frac{-\frac{4}{5}}{\frac{3}{5}}

tan\theta=-\frac{4}{3}

cot\theta=\frac{1}{tan\theta}

cot\theta=-\frac{3}{4}

#Learns more:

https://brainly.in/question/13605523

Similar questions