Math, asked by palwindera058, 1 month ago

6. Find the amount and the compound interest on 1,600 for three years if the rates for three yea
are 4%, 5% and 8%, respectively, the interest being payable annually.​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\:  \:  \:  \:  \:  \bull \:  \:  \: \sf{ Sum\:_{(money)}=Rs \: 1600}

\:  \:  \:  \:  \:  \bull \:  \:  \:\sf{ Rate \: of \: interest\:_{(r_1)}=4\%}

\:  \:  \:  \:  \:  \bull \:  \:  \:\sf{ Time\:_{(t_1)}=1\: year}

\:  \:  \:  \:  \:  \bull \:  \:  \:\sf{ Rate \: of \: interest\:_{(r_2)}=5\%}

\:  \:  \:  \:  \:  \bull \:  \:  \:\sf{ Time\:_{(t_2)}=1\: year}

\:  \:  \:  \:  \:  \bull \:  \:  \:\sf{ Rate \: of \: interest\:_{(r_3)}=8\%}

\:  \:  \:  \:  \:  \bull \:  \:  \:\sf{ Time\:_{(t_3)}=1\: year}

We know,

☆ If a certain sum of money P is invested for successive rate of interest, then amount A is given by

\rm :\longmapsto\:A = P {\bigg(1 + \dfrac{r_1}{100}  \bigg) }^{t_1}{\bigg(1 + \dfrac{r_2}{100}  \bigg) }^{t_2}{\bigg(1 + \dfrac{r_3}{100}  \bigg) }^{t_3}

☆ On substituting the values, we get

\rm :\longmapsto\:A = 1600{\bigg(1 + \dfrac{4}{100}\bigg) }^{1}{\bigg(1 + \dfrac{5}{100}\bigg) }^{1}{\bigg(1 + \dfrac{8}{100}\bigg) }^{1}

\rm :\longmapsto\:A = 1600 \times (1.04) \times (1.05) \times (1.08)

\rm :\longmapsto\:A = 1886.98

Hence,

 \:  \:  \:  \: \red{ \boxed{ \bf{ \: Amount \: after \: 3 \: years = Rs \: 1886.98}}}

We know,

\red{\rm :\longmapsto\:Compound \: Interest = Amount - Principal}

 \:  \:   \rm \:  =  \:   \:1886.98 - 1600

 \:  \:   \rm \:  =  \:   \:286.98

Hence,

\red{ \boxed{ \bf{ \: Compound \: Interest  \: after \: 3 \: years = Rs \: 286.98}}}

Additional Information :-

☆ If a certain sum of money Rs P is invested at the rate of r % per annum compounded annually for the time period of n years, then Amount is

 \boxed{ \sf \: A = P{\bigg(1 + \dfrac{r}{100}  \bigg) }^{n}}

☆ If a certain sum of money Rs P is invested at the rate of r % per annum compounded half yearly for the time period of n years, then Amount is

 \boxed{ \sf \: A = P{\bigg(1 + \dfrac{r}{200}  \bigg) }^{2n}}

☆ If a certain sum of money Rs P is invested at the rate of r % per annum compounded quarterly for the time period of n years, then Amount is

 \boxed{ \sf \: A = P{\bigg(1 + \dfrac{r}{400}  \bigg) }^{4n}}

Answered by jhumpasamanta9840
1

Answer:

Solution−

Given that

\: \: \: \: \: \bull \: \: \: \sf{ Sum\:_{(money)}=Rs \: 1600}∙Sum

(money)

=Rs1600

\: \: \: \: \: \bull \: \: \:\sf{ Rate \: of \: interest\:_{(r_1)}=4\%}∙Rateofinterest

(r

1

)

=4%

\: \: \: \: \: \bull \: \: \:\sf{ Time\:_{(t_1)}=1\: year}∙Time

(t

1

)

=1year

\: \: \: \: \: \bull \: \: \:\sf{ Rate \: of \: interest\:_{(r_2)}=5\%}∙Rateofinterest

(r

2

)

=5%

\: \: \: \: \: \bull \: \: \:\sf{ Time\:_{(t_2)}=1\: year}∙Time

(t

2

)

=1year

\: \: \: \: \: \bull \: \: \:\sf{ Rate \: of \: interest\:_{(r_3)}=8\%}∙Rateofinterest

(r

3

)

=8%

\: \: \: \: \: \bull \: \: \:\sf{ Time\:_{(t_3)}=1\: year}∙Time

(t

3

)

=1year

We know,

☆ If a certain sum of money P is invested for successive rate of interest, then amount A is given by

\rm :\longmapsto\:A = P {\bigg(1 + \dfrac{r_1}{100} \bigg) }^{t_1}{\bigg(1 + \dfrac{r_2}{100} \bigg) }^{t_2}{\bigg(1 + \dfrac{r_3}{100} \bigg) }^{t_3}:⟼A=P(1+

100

r

1

)

t

1

(1+

100

r

2

)

t

2

(1+

100

r

3

)

t

3

☆ On substituting the values, we get

\rm :\longmapsto\:A = 1600{\bigg(1 + \dfrac{4}{100}\bigg) }^{1}{\bigg(1 + \dfrac{5}{100}\bigg) }^{1}{\bigg(1 + \dfrac{8}{100}\bigg) }^{1}:⟼A=1600(1+

100

4

)

1

(1+

100

5

)

1

(1+

100

8

)

1

\rm :\longmapsto\:A = 1600 \times (1.04) \times (1.05) \times (1.08):⟼A=1600×(1.04)×(1.05)×(1.08)

\rm :\longmapsto\:A = 1886.98:⟼A=1886.98

Hence,

\: \: \: \: \red{ \boxed{ \bf{ \: Amount \: after \: 3 \: years = Rs \: 1886.98}}}

Amountafter3years=Rs1886.98

We know,

\red{\rm :\longmapsto\:Compound \: Interest = Amount - Principal}:⟼CompoundInterest=Amount−Principal

\: \: \rm \: = \: \:1886.98 - 1600=1886.98−1600

\: \: \rm \: = \: \:286.98=286.98

Hence,

\red{ \boxed{ \bf{ \: Compound \: Interest \: after \: 3 \: years = Rs \: 286.98}}}

CompoundInterestafter3years=Rs286.98

Additional Information :-

☆ If a certain sum of money Rs P is invested at the rate of r % per annum compounded annually for the time period of n years, then Amount is

\boxed{ \sf \: A = P{\bigg(1 + \dfrac{r}{100} \bigg) }^{n}}

A=P(1+

100

r

)

n

☆ If a certain sum of money Rs P is invested at the rate of r % per annum compounded half yearly for the time period of n years, then Amount is

\boxed{ \sf \: A = P{\bigg(1 + \dfrac{r}{200} \bigg) }^{2n}}

A=P(1+

200

r

)

2n

☆ If a certain sum of money Rs P is invested at the rate of r % per annum compounded quarterly for the time period of n years, then Amount is

\boxed{ \sf \: A = P{\bigg(1 + \dfrac{r}{400} \bigg) }^{4n}}

A=P(1+

400

r

)

4n

Similar questions