Math, asked by safar74, 2 months ago

6.
Find the
area of the
ellipse

Attachments:

Answers

Answered by vchoudhary1512
2

Answer:

hope it helps you mark me as brainliest

Attachments:
Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given equation of ellipse is

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

\rm :\longmapsto\: \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 - \dfrac{ {x}^{2} }{ {a}^{2} }

\rm :\longmapsto\: \dfrac{ {y}^{2} }{ {b}^{2} }  =  \dfrac{ {a}^{2}  -  {x}^{2} }{ {a}^{2} }

\rm :\longmapsto\: {y}^{2} =  \dfrac{ {b}^{2} ( {a}^{2}  -  {x}^{2}) }{ {a}^{2} }

\rm :\implies\:y = \dfrac{b}{a} \sqrt{ {a}^{2}  -  {x}^{2} }

Curve sketching :-

We know, ellipse is symmetrical in all the four quadrants.

So,

Required area is

 \rm \:  \:  =  \:4 \displaystyle\int_0^a \: y \: dx

 \rm \:  \:  =  \:4 \displaystyle\int_0^a \:  \dfrac{b}{a}  \sqrt{ {a}^{2}  -  {x}^{2} } \: dx

 \rm \:  \:  =  \:\dfrac{4b}{a}  \displaystyle\int_0^a \: \sqrt{ {a}^{2}  -  {x}^{2} } \: dx

 \rm \:  \:  =  \:\dfrac{4b}{a}  \bigg(\dfrac{x}{2} \sqrt{ {a}^{2}  -  {x}^{2} } + \dfrac{ {a}^{2} }{2} {sin}^{ - 1}\dfrac{x}{a}\bigg)_0^a

 \rm \:  \:  =  \:\dfrac{4b}{a}  \bigg(0 + \dfrac{ {a}^{2} }{2} {sin}^{ - 1}\dfrac{a}{a} - 0 - 0\bigg)

 \rm \:  \:  =  \:\dfrac{4b}{a}  \bigg( \dfrac{ {a}^{2} }{2} {sin}^{ - 1}1\bigg)

 \rm \:  \:  =  \: \dfrac{4b}{a} \times \dfrac{ {a}^{2} }{2}  \times \dfrac{\pi}{2}

 \rm \:  \:  =  \: \pi \: ab \: square \: units

Hence,

\bf :\longmapsto\:Area \: bounded \: by \: \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \: is \: \pi \: ab \: sq. \: units

Formula Used :-

 \red{ \boxed{ \sf{\displaystyle\int\tt  \sqrt{ {a}^{2} -  {x}^{2}}dx =  \frac{x}{2} \sqrt{ {a}^{2}  -  {x}^{2}}   +  \frac{ {a}^{2} }{2} {sin}^{ - 1} \frac{x}{a} + c }}}

 \red{ \boxed{ \sf{ {sin}^{ - 1}1 =  \frac{\pi}{2}  }}}

 \red{ \boxed{ \sf{ {sin}^{ - 1}0 =  0  }}}

 \red{ \boxed{ \sf{Area \: w. \: r. \: t. \: x - axis \:  =  \: \displaystyle\int_{x_1}^{x_2} \:y \: dx }}}

Attachments:

pulakmath007: Awesome Bro
Similar questions