Math, asked by yash3303, 4 months ago


6. Find the length of the diagonal of a cuboid of dimensions 6 cm x 8 cm x 10 cm.​

Answers

Answered by suniltty180
2

Answer:

Answer

(a) Length =10cm, breadth =8cm, height =3cm

Volume of cuboid =lbh=10×8×3=240cm

3

[V=240cm

3

]

(b) Length =1.5m, breadth =25cm, height =15cm

[1m=100cm]

Volume of cuboid =lbh=150×25×15=56250

[V=56,250cm

3

]

(c) Length =15cm, breadth=2.5dm, height =8cm

[1dm]=10cm

Volume of cuboid =lbh=15×25×8

[V=3000cm

3

].

Answered by Agamsain
6

Answer :-

  • Diagonal of cuboid = 14.14 cm

Given :-

  • Length of cuboid = 6 cm
  • Width of cuboid = 8 cm
  • Height of cuboid = 10 cm

To Find :-

  • Diagonal of cuboid = ?

Explanation :-

As we know, we have formulae to find the diagonal of cuboid .

\blue { \boxed { \bf \bigstar \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2} \; \; \bigstar }}

\rm : \; \longmapsto \sqrt{(6)^2+(8)^2+(10)^2} \; \; \; cm

\rm : \; \longmapsto \sqrt{(36)+(64)+(100)} \; \; \; cm

\rm : \; \longmapsto \sqrt{(100)+(100)} \; \; \; cm

\rm : \; \longmapsto \sqrt{(200)} \; \; \; cm

\rm : \; \longmapsto \sqrt{200} \; \; \; cm

\green { \underline { \boxed { \bf : \; \longmapsto 14.14 \; \; \; cm}}} \qquad \bf [Approx.]

Hence, the diagonal of the of the cuboid is 14.14 cm.

\huge \text{\underline{\underline{More To Know}}}

\rm \star \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2}

\rm \star \; Diagonal \; of \; Cube = \sqrt{3} \; (Side)

\rm \star \; TSA \; of \; Cuboid = 2 \; (LB+BH+HL)

\rm \star \; TSA \; of \; Cube = 6(Side)^2

\rm \star \; LSA \; of \; Cuboid = 2H\; (L+B)

\rm \star \; LSA \; of \; Cube = 4(Side)^2

Similar questions