Math, asked by abiralpandey91, 7 months ago

6) find the perimeter of a triangle ABC which vertices are A(2,1) , B(5,1) and C(5,5).

7) prove that , A(2,1) , B(2,3) and C(4,2) are vertices of an isosceles triangle.

Answers

Answered by rohitkhajuria90
2

Step-by-step explanation:

6)

vertices are A(2,1) , B(5,1) and C(5,5)

Lets find the length of the sides

AB = \sqrt{ {(5 - 2)}^{2} +  {(1 - 1}^{2}  }  =  \sqrt{ {3}^{2} +  {0}^{2}  }  =  \sqrt{9}  = 3\\

BC =  \sqrt{ {((5 - 5)}^{2}  +   {(5 - 1)}^{2} }  =  \sqrt{ {0}^{2} +  {4}^{2}  }  =  \sqrt{16}  = 4

CA =  \sqrt{ {(5 - 2)}^{2} +   {(5 - 1)}^{2}   }  =  \sqrt{ {3}^{2} +  {4}^{2}  }  =  \sqrt{25}  = 5

Perimeter of triangle = Sum of its side = 3+4+5 = 12

7)

Vertices are A(2,1) , B(2,3) and C(4,2)

Lets find out the length of the sides

AB =  \sqrt{ {(2 - 2)}^{2} +  {(3 - 1)}^{2}  }  =  \sqrt{ {0}^{2}  +  {2}^{2} }  =  \sqrt{4}  = 2

BC =  \sqrt{ {(4 - 2)}^{2} +  {(2 - 3)}^{2}  }  =  \sqrt{ {2}^{2}  +  {( - 1)}^{2} }  =  \sqrt{5}

CA =  \sqrt{ {(4 - 2)}^{2}  +  {(2 - 1)}^{2} }  \\  =  \sqrt{ {2}^{2} +  {1}^{2}  }  =  \sqrt{5}

As sides BC = CA hence the vertices are of isosceles triangle.

Similar questions