Math, asked by snehaadak88, 8 months ago

6.
Find the possible value of sin x, if
8.sin x - cos x = 4.​

Answers

Answered by mahelajayavardhane
0

3sinx−cos44=4⇒3sinA−4=cosx

sin

2

x+(Bsin×−4)

2

=1

sin

2

x+64sin

2

x−64sinx+16=1

65sin

2

x−64sinx+15=0

sinx=

5

3

sinx=

13

5

sinx={

53sinx−cos44=4⇒3sinA−4=cosx

sin

2

x+(Bsin×−4)

2

=1

sin

2

x+64sin

2

x−64sinx+16=1

65sin

2

x−64sinx+15=0

sinx=

5

3

sinx=

13

5

sinx={

5

3

,

13

5

}

3

,

13

5

}

Answered by neelamkumari19
2

Answer:

Mark me brainlist

Step-by-step explanation:

8sin x - cos x= 4

Therefore,

8sin x-4 = cos x

sin 2 x + cos 2 x =1

Thus,

sin 2 x+ ( 8sin x - 2 ) 2 =1

sin 2 x + 64 sin x 2 - 64 sin x + 16= 1

(since ( a+b) 2 + 2ab + b2)

Therefore,

65sin 2 x- 64 x+ 16= 1

65sin 2x - 64sin X +15 = 0

sin x 3/5 and sin x 5/13

Thus possible value of sin x are:

sin x =

 {3 \5 }^{5 \13}

Similar questions