6.
Find the possible value of sin x, if
8.sin x - cos x = 4.
Answers
Answered by
0
3sinx−cos44=4⇒3sinA−4=cosx
sin
2
x+(Bsin×−4)
2
=1
sin
2
x+64sin
2
x−64sinx+16=1
65sin
2
x−64sinx+15=0
sinx=
5
3
sinx=
13
5
sinx={
53sinx−cos44=4⇒3sinA−4=cosx
sin
2
x+(Bsin×−4)
2
=1
sin
2
x+64sin
2
x−64sinx+16=1
65sin
2
x−64sinx+15=0
sinx=
5
3
sinx=
13
5
sinx={
5
3
,
13
5
}
3
,
13
5
}
Answered by
2
Answer:
Mark me brainlist
Step-by-step explanation:
8sin x - cos x= 4
Therefore,
8sin x-4 = cos x
sin 2 x + cos 2 x =1
Thus,
sin 2 x+ ( 8sin x - 2 ) 2 =1
sin 2 x + 64 sin x 2 - 64 sin x + 16= 1
(since ( a+b) 2 + 2ab + b2)
Therefore,
65sin 2 x- 64 x+ 16= 1
65sin 2x - 64sin X +15 = 0
sin x 3/5 and sin x 5/13
Thus possible value of sin x are:
sin x =
Similar questions