Math, asked by Amolkokde123, 8 months ago

6. Find the radius of curvature of if Y = Log sinx at a x = pi/2

Answers

Answered by pulakmath007
11

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

For a curve y = f(x) the radius of curvature

 =  \displaystyle \sf{ \frac{ { \bigg[  1+  \bigg( { \frac{dy}{dx} \bigg)}^{2} \bigg] }^{ \frac{3}{2} } }{  \big| \:  \frac{ {d}^{2}y }{d {x}^{2} }  \big| }  \: }

TO DETERMINE

The radius of curvature of

  \displaystyle \: \sf{y =  \log \sin x \:  \:  \:  \: at \:  \:  \: x =  \frac{\pi}{2}  \: }

CALCULATION

Given

  \displaystyle \: \sf{y =  \log \sin x \:  \:  \:  \:  \: }

Differentiating both sides with respect to x two times we get

  \displaystyle \: \sf{ \frac{dy}{dx}  =  \frac{ \cos x}{ \sin x}  =  \cot x \:  \:  \: }

  \displaystyle \: \sf{ \frac{ {d}^{2}y }{d {x}^{2} }  = -  { \cosec}^{2} x  \: }

Now

  \displaystyle \: \sf{ At\:  x =  \frac{\pi}{2} \: \:  \: we \: have \:   \frac{dy}{dx}  =  \cot  \frac{\pi}{2} \:   = 0\:  \: }

  \displaystyle \: \sf{ At\:  x =  \frac{\pi}{2}  \:  \:  we \:  \: have \:  \:  \frac{ {d}^{2}y }{d {x}^{2} }  = -  { \cosec}^{2}  \frac{\pi}{2} =  - 1   \: }

Hence the required radius of curvature

 =  \displaystyle \sf{ \frac{ { \bigg[  1+  \bigg( { \frac{dy}{dx} \bigg)}^{2} \bigg] }^{ \frac{3}{2} } }{  \big| \:  \frac{ {d}^{2}y }{d {x}^{2} }  \big| }  \: }

 =  \displaystyle \sf{ \frac{ { \bigg[  1+  0 \bigg] }^{ \frac{3}{2} } }{  \big| \:  - 1 \:   \big| }  \: }

 =  \displaystyle \sf{  \frac{1}{1} }

 =  \displaystyle \sf{ 1}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The no. of lines that can be drawn through the point (5,2) at a distance of 5 units from the point (2,-2)

https://brainly.in/question/21278599

Similar questions