Math, asked by nisha1877, 1 year ago

6. Find the value of sin 75° sin 15°.​

Answers

Answered by rahul8132
12

Answer:

sin75'sin15'=sin(90'-15')sin15'

=cos15'sin15'

=1/2multiple2sin15'cos15'

=1/2sin2multiple15'

=1/2sin30'

=1/2mult1/2

=1/4

Answered by Abhiram5566
6

Hello Dear,

Thanks For Asking the Question :)

Your Answer is Below

----------------------------------------------------------------------------------------------

Question :-

sin 75° sin 15°

Explanation :-

sin 75° sin 15°

\mathrm{Use\:the\:following\:identity}:\quad \sin \left(s\right)\sin \left(t\right)=\frac{-\cos \left(s+t\right)+\cos \left(s-t\right)}{2}

\sin \left(75^{\circ \:}\right)\sin \left(15^{\circ \:}\right)=\frac{-\cos \left(75^{\circ \:}+15^{\circ \:}\right)+\cos \left(75^{\circ \:}-15^{\circ \:}\right)}{2}

\frac{-\cos \left(90^{\circ \:}\right)+\cos \left(60^{\circ \:}\right)}{2}

\frac{-\cos \left(90^{\circ \:}\right)+\cos \left(60^{\circ \:}\right)}{2}

  • Cos ( 90° ) = 0
  • Cos ( 60° ) = \huge\frac{1}{2}

\frac{-0\ +\ \frac{1}{2}}{2}

\frac{1}{2\ \cdot \ 2 }

\frac{1}{4}

                          \huge{\orange{\boxed{\boxed{\pink{\underline{\green{\mathscr{ \sin \left(75^{\circ \:}\right)\sin \left(15^{\circ \:}\right) = \frac{1}{4}  }}} }} }}}

----------------------------------------------------------------------------------------------

Hope It Helps You Dear ! :D  ^_^

By Abhiram5566

                                  MARK ME AS BRAINLIEST ANSWER

----------------------------------------------------------------------------------------------

Similar questions