Chemistry, asked by ghoreta32, 3 months ago

6. For a half wave rectifier average value of output current is (io is the maximum value of current)
(A) i0
(B) i0π
(C) 2i0π
(D) 2/i0π​

Answers

Answered by nirman95
2

Average current in HALF WAVE RECTIFIER:

1) \: i =  i_{0} \sin( \omega t)  \:  \:  \:  \: . \: . \: . \: .(t <  \dfrac{T}{2} )

2) \: i = 0 \:  \:  \:  \: . \: . \: . \: .( \dfrac{T}{2}  < t < T )

Now, average current will be :

 \therefore \: i_{avg} =   \dfrac{  \displaystyle\int_{0}^{T} i  \: dt }{  \displaystyle\int_{0}^{T}  \: dt}

 \implies \: i_{avg} =   \dfrac{  \displaystyle\int_{0}^{T} i  \: dt }{T}

 \implies \: i_{avg} =   \dfrac{  \displaystyle\int_{0}^{ \frac{T}{2} } i_{0} \sin( \omega t)   \: dt +  \int_{ \frac{T}{2}}^{T} 0 \: dt}{T}

 \implies \: i_{avg} =   \dfrac{  \displaystyle\int_{0}^{ \frac{T}{2} } i_{0} \sin( \omega t) \: dt }{T}

 \implies \: i_{avg} = i_{0} \times  \dfrac{  \displaystyle\int_{0}^{ \frac{T}{2} } \sin( \omega t) \: dt }{T}

 \implies \: i_{avg} = i_{0} \times  \dfrac{ \bigg \{  -  \cos( \omega t) \bigg \}_{0}^{ \frac{T}{2}}}{ \omega  T}

 \implies \: i_{avg} = i_{0} \times  \dfrac{ \bigg \{   - \cos( \omega t) \bigg \}_{0}^{ \frac{T}{2}}}{  \frac{2\pi}{T}  \times   T}

 \implies \: i_{avg} = i_{0} \times  \dfrac{ \bigg \{   - \cos( \omega t) \bigg \}_{0}^{ \frac{T}{2}}}{2\pi}

 \implies \: i_{avg} = i_{0} \times  \dfrac{ \bigg \{    \cos( 0)  -  \cos( \frac{2\pi}{T} \times  \frac{T}{2}  ) \bigg \}}{2\pi}

 \implies \: i_{avg} = i_{0} \times  \dfrac{ \bigg \{1 - ( - 1) \bigg \}}{2\pi}

 \implies \: i_{avg} = i_{0} \times  \dfrac{2}{2\pi}

 \implies \: i_{avg} =  \dfrac{i_{0}}{\pi}

So, average value of current is i_(0)/π.


prince5132: Awesome
Similar questions