Math, asked by harshitarawat6006, 1 month ago

6. For three sets A, B and C, show that (i) AnB= AnC need not imply B=C. (ii) ACB =>C-B C C-A​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-i}}

Let assume that,

↝ A = { 1, 2 }

↝ B = { 1, 3 }

↝ C = { 1, 4 }

Now,

 \red{\rm :\longmapsto\:A \:  \cap \: B \:  =  \:  \{1 \}}

 \red{\rm :\longmapsto\:A \:  \cap \: C \:  =  \:  \{1 \}}

\bf\implies \:A \:  \cap \: B \:  =  \: A \:  \cap \: C

But

\rm :\longmapsto\:B \:  \ne \: C

Hence, Justified

 \green{\large\underline{\sf{Solution-ii}}}

Given that,

\rm :\longmapsto\:A \:  \sub \: B

Consider,

Let assume that

\rm :\longmapsto\:x \:  \in \: C - B

\rm :\implies\:\:x \:  \in \: C  \: and \: x \:   \cancel\in \: B

\rm :\implies\:\:x \:  \in \: C  \: and \: x \:   \cancel\in \: A \:  \:  \:  \:  \{ \because \: A \:  \sub \: B \}

\rm :\implies\:\:x \:  \in \: C   - A

\rm :\implies\:\:C - B \:  \sub \: C   - A

Hence, Proved

Additional Information -

1. Commutative Law :-

\red{ \boxed{ \sf{ \:A \:  \cup \: B \:  =  \: B \:  \cup \: A}}}

\red{ \boxed{ \sf{ \:A \:  \cap \: B \:  =  \: B \:  \cap \: A}}}

2. Associative Law :-

\red{ \boxed{ \sf{ \:(A \:  \cap \: B ) \:  \cap\: C = A \:  \cap \:( B \:  \cap \: C)}}}

\red{ \boxed{ \sf{ \:(A \:  \cup \: B ) \:  \cup\: C = A \:  \cup \:( B \:  \cup \: C)}}}

3. Distributive Law

\red{ \boxed{ \sf{ \:(A \:  \cup \: B) \:  \cap \: C \:  =  \: (A \:  \cap \: C) \:  \cup \: (B \:  \cap \: C) \:  \: }}}

\red{ \boxed{ \sf{ \:(A \:  \cap \: B) \:  \cup \: C \:  =  \: (A \:  \cup \: C) \:  \cap \: (B \:  \cup \: C) \:  \: }}}

Similar questions